Prekodravac, Jovana

Link to this page

Authority KeyName Variants
orcid::0000-0002-5692-0119
  • Prekodravac, Jovana (2)
Projects

Author's Bibliography

Raman spectroscopy study of graphene thin films synthesized from solid precursor

Prekodravac, Jovana; Marković, Zoran; Jovanović, Svetlana P.; Holclajtner-Antunović, Ivanka; Pavlović, Vladimir; Todorović-Marković, Biljana

(Springer, Dordrecht, 2016)

TY  - JOUR
AU  - Prekodravac, Jovana
AU  - Marković, Zoran
AU  - Jovanović, Svetlana P.
AU  - Holclajtner-Antunović, Ivanka
AU  - Pavlović, Vladimir
AU  - Todorović-Marković, Biljana
PY  - 2016
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4142
AB  - In this work, we present Raman spectroscopy study of graphene thin films obtained by rapid thermal annealing in vacuum. As a carbon source, we used spectroscopic graphite electrodes cut into small pieces on top of which we deposited copper/nickel thin films. Samples were then annealed at different annealing temperatures (600, 700, 800 and 900 degrees C) for 30 min. Raman spectroscopy study showed that annealing at lower annealing temperatures (600 and 700 degrees C) leads to formation of single layer graphene thin films with relatively high level of defects. Annealing at higher annealing temperatures (800 and 900 degrees C), on the other hand, resulted in formation of homogenous multilayer graphene thin films. From Raman spectra, we also concluded that samples annealed at higher annealing temperatures had lower level of defects compared to the samples annealed at lower annealing temperatures.
PB  - Springer, Dordrecht
T2  - Optical and Quantum Electronics
T1  - Raman spectroscopy study of graphene thin films synthesized from solid precursor
IS  - 2
VL  - 48
DO  - 10.1007/s11082-016-0385-5
ER  - 
@article{
author = "Prekodravac, Jovana and Marković, Zoran and Jovanović, Svetlana P. and Holclajtner-Antunović, Ivanka and Pavlović, Vladimir and Todorović-Marković, Biljana",
year = "2016",
abstract = "In this work, we present Raman spectroscopy study of graphene thin films obtained by rapid thermal annealing in vacuum. As a carbon source, we used spectroscopic graphite electrodes cut into small pieces on top of which we deposited copper/nickel thin films. Samples were then annealed at different annealing temperatures (600, 700, 800 and 900 degrees C) for 30 min. Raman spectroscopy study showed that annealing at lower annealing temperatures (600 and 700 degrees C) leads to formation of single layer graphene thin films with relatively high level of defects. Annealing at higher annealing temperatures (800 and 900 degrees C), on the other hand, resulted in formation of homogenous multilayer graphene thin films. From Raman spectra, we also concluded that samples annealed at higher annealing temperatures had lower level of defects compared to the samples annealed at lower annealing temperatures.",
publisher = "Springer, Dordrecht",
journal = "Optical and Quantum Electronics",
title = "Raman spectroscopy study of graphene thin films synthesized from solid precursor",
number = "2",
volume = "48",
doi = "10.1007/s11082-016-0385-5"
}
Prekodravac, J., Marković, Z., Jovanović, S. P., Holclajtner-Antunović, I., Pavlović, V.,& Todorović-Marković, B.. (2016). Raman spectroscopy study of graphene thin films synthesized from solid precursor. in Optical and Quantum Electronics
Springer, Dordrecht., 48(2).
https://doi.org/10.1007/s11082-016-0385-5
Prekodravac J, Marković Z, Jovanović SP, Holclajtner-Antunović I, Pavlović V, Todorović-Marković B. Raman spectroscopy study of graphene thin films synthesized from solid precursor. in Optical and Quantum Electronics. 2016;48(2).
doi:10.1007/s11082-016-0385-5 .
Prekodravac, Jovana, Marković, Zoran, Jovanović, Svetlana P., Holclajtner-Antunović, Ivanka, Pavlović, Vladimir, Todorović-Marković, Biljana, "Raman spectroscopy study of graphene thin films synthesized from solid precursor" in Optical and Quantum Electronics, 48, no. 2 (2016),
https://doi.org/10.1007/s11082-016-0385-5 . .
8
4
11

The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing

Prekodravac, Jovana; Marković, Zoran; Jovanović, Svetlana P.; Budimir, Milica D.; Perusko, Davor; Holclajtner-Antunović, Ivanka; Pavlović, Vladimir; Syrgiannis, Zois; Bonasera, Aurelio; Todorović-Marković, Biljana

(Elsevier Science Sa, Lausanne, 2015)

TY  - JOUR
AU  - Prekodravac, Jovana
AU  - Marković, Zoran
AU  - Jovanović, Svetlana P.
AU  - Budimir, Milica D.
AU  - Perusko, Davor
AU  - Holclajtner-Antunović, Ivanka
AU  - Pavlović, Vladimir
AU  - Syrgiannis, Zois
AU  - Bonasera, Aurelio
AU  - Todorović-Marković, Biljana
PY  - 2015
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/3685
AB  - In this paper, we performed synthesis of graphene thin films by rapid thermal annealing (RTA) of thin nickel copper (Ni/Cu) layers deposited on spectroscopic graphite as a carbon source. Furthermore, we investigated the effect of annealing temperature and annealing time on formation and quality of synthesized graphene films. Raman spectroscopy study showed that annealing at lower temperatures results in formation of monolayer graphene films, while annealing at higher temperatures results in formation of multilayer graphene films. We used Raman mapping to determine the distribution of graphene sheets. Surface morphology of graphene thin films was investigated by atomic force microscopy and scanning electron microscopy with EDS probe.
PB  - Elsevier Science Sa, Lausanne
T2  - Synthetic Metals
T1  - The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing
EP  - 467
SP  - 461
VL  - 209
DO  - 10.1016/j.synthmet.2015.08.015
ER  - 
@article{
author = "Prekodravac, Jovana and Marković, Zoran and Jovanović, Svetlana P. and Budimir, Milica D. and Perusko, Davor and Holclajtner-Antunović, Ivanka and Pavlović, Vladimir and Syrgiannis, Zois and Bonasera, Aurelio and Todorović-Marković, Biljana",
year = "2015",
abstract = "In this paper, we performed synthesis of graphene thin films by rapid thermal annealing (RTA) of thin nickel copper (Ni/Cu) layers deposited on spectroscopic graphite as a carbon source. Furthermore, we investigated the effect of annealing temperature and annealing time on formation and quality of synthesized graphene films. Raman spectroscopy study showed that annealing at lower temperatures results in formation of monolayer graphene films, while annealing at higher temperatures results in formation of multilayer graphene films. We used Raman mapping to determine the distribution of graphene sheets. Surface morphology of graphene thin films was investigated by atomic force microscopy and scanning electron microscopy with EDS probe.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Synthetic Metals",
title = "The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing",
pages = "467-461",
volume = "209",
doi = "10.1016/j.synthmet.2015.08.015"
}
Prekodravac, J., Marković, Z., Jovanović, S. P., Budimir, M. D., Perusko, D., Holclajtner-Antunović, I., Pavlović, V., Syrgiannis, Z., Bonasera, A.,& Todorović-Marković, B.. (2015). The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing. in Synthetic Metals
Elsevier Science Sa, Lausanne., 209, 461-467.
https://doi.org/10.1016/j.synthmet.2015.08.015
Prekodravac J, Marković Z, Jovanović SP, Budimir MD, Perusko D, Holclajtner-Antunović I, Pavlović V, Syrgiannis Z, Bonasera A, Todorović-Marković B. The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing. in Synthetic Metals. 2015;209:461-467.
doi:10.1016/j.synthmet.2015.08.015 .
Prekodravac, Jovana, Marković, Zoran, Jovanović, Svetlana P., Budimir, Milica D., Perusko, Davor, Holclajtner-Antunović, Ivanka, Pavlović, Vladimir, Syrgiannis, Zois, Bonasera, Aurelio, Todorović-Marković, Biljana, "The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing" in Synthetic Metals, 209 (2015):461-467,
https://doi.org/10.1016/j.synthmet.2015.08.015 . .
22
10
22