Malagurski, Ivana

Link to this page

Authority KeyName Variants
22dfbfe7-cc64-4c6e-9e44-b119db5b71a8
  • Malagurski, Ivana (7)
Projects

Author's Bibliography

Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/P(3HO) scaffolds for tissue engineering applications

Solarz, Daria; Witko, Tomasz; Karcz, Robert; Malagurski, Ivana; Ponjavic, Marijana; Levic, Steva; Nesic, Aleksandra; Guzik, Maciej; Savic, Sanja; Nikodinovic-Runic, Jasmina

(2023)

TY  - JOUR
AU  - Solarz, Daria
AU  - Witko, Tomasz
AU  - Karcz, Robert
AU  - Malagurski, Ivana
AU  - Ponjavic, Marijana
AU  - Levic, Steva
AU  - Nesic, Aleksandra
AU  - Guzik, Maciej
AU  - Savic, Sanja
AU  - Nikodinovic-Runic, Jasmina
PY  - 2023
UR  - http://www.ncbi.nlm.nih.gov/pubmed/37577093
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6430
AB  - Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.
T2  - RSC advances
T2  - RSC advancesRSC Adv
T1  - Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/P(3HO) scaffolds for tissue engineering applications
EP  - 24128
IS  - 34
SP  - 24112
VL  - 13
DO  - 10.1039/d3ra03021k
ER  - 
@article{
author = "Solarz, Daria and Witko, Tomasz and Karcz, Robert and Malagurski, Ivana and Ponjavic, Marijana and Levic, Steva and Nesic, Aleksandra and Guzik, Maciej and Savic, Sanja and Nikodinovic-Runic, Jasmina",
year = "2023",
abstract = "Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.",
journal = "RSC advances, RSC advancesRSC Adv",
title = "Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/P(3HO) scaffolds for tissue engineering applications",
pages = "24128-24112",
number = "34",
volume = "13",
doi = "10.1039/d3ra03021k"
}
Solarz, D., Witko, T., Karcz, R., Malagurski, I., Ponjavic, M., Levic, S., Nesic, A., Guzik, M., Savic, S.,& Nikodinovic-Runic, J.. (2023). Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/P(3HO) scaffolds for tissue engineering applications. in RSC advances, 13(34), 24112-24128.
https://doi.org/10.1039/d3ra03021k
Solarz D, Witko T, Karcz R, Malagurski I, Ponjavic M, Levic S, Nesic A, Guzik M, Savic S, Nikodinovic-Runic J. Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/P(3HO) scaffolds for tissue engineering applications. in RSC advances. 2023;13(34):24112-24128.
doi:10.1039/d3ra03021k .
Solarz, Daria, Witko, Tomasz, Karcz, Robert, Malagurski, Ivana, Ponjavic, Marijana, Levic, Steva, Nesic, Aleksandra, Guzik, Maciej, Savic, Sanja, Nikodinovic-Runic, Jasmina, "Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/P(3HO) scaffolds for tissue engineering applications" in RSC advances, 13, no. 34 (2023):24112-24128,
https://doi.org/10.1039/d3ra03021k . .
3
1

UV-blocking sustainable food packaging based on polyhydroxyalkanoate and bacterial pigment prodigiosin

Ponjavić, Marijana; Malagurski, Ivana; Salević-Jelić, Ana; Lazić, Jelena; Nikodinović-Runić, Jasmina

(Institute for Information Technologies, University of Kragujevac, Serbia, 2023)

TY  - CONF
AU  - Ponjavić, Marijana
AU  - Malagurski, Ivana
AU  - Salević-Jelić, Ana
AU  - Lazić, Jelena
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6850
AB  - New film materials based on bacterial biomolecules polyhydroxyalkanoate (poly(3
hydroxybutyrate-co-3-hydroxyvalerate) PHBV) and prodigiosin (PG) were produced by 
solvent casting as a potential food packaging material. Film precursors were obtained in a 
sustainable manner via microbial fermentation using waste stream-based substrates (cooking oil 
and second-grade canned meat, after the expiry date). The incorporation of PG into the PHBV has 
influenced the morphology and functionality of the obtained materials. PG acted as a nucleating 
agent, affecting in turn PHBV/PG film surface morphology. The films were intensively colored, 
transparent and blocked UV-light. An increase in PG content decreased film transparency but it 
did not affect UV-blocking ability. Migration experiments have shown that films possess the 
potential to release PG into lipophilic food simulant media where it has exhibited antioxidative 
action. The obtained results suggest that PHBV/PG films can be potentially used as sustainable 
and active food packaging materials.
PB  - Institute for Information Technologies, University of Kragujevac, Serbia
C3  - Book of Proceedings of the 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023)
T1  - UV-blocking sustainable food packaging based on polyhydroxyalkanoate and bacterial pigment prodigiosin
EP  - 1354
SP  - 1351
DO  - 10.46793/ICCBI23.351P
ER  - 
@conference{
author = "Ponjavić, Marijana and Malagurski, Ivana and Salević-Jelić, Ana and Lazić, Jelena and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "New film materials based on bacterial biomolecules polyhydroxyalkanoate (poly(3
hydroxybutyrate-co-3-hydroxyvalerate) PHBV) and prodigiosin (PG) were produced by 
solvent casting as a potential food packaging material. Film precursors were obtained in a 
sustainable manner via microbial fermentation using waste stream-based substrates (cooking oil 
and second-grade canned meat, after the expiry date). The incorporation of PG into the PHBV has 
influenced the morphology and functionality of the obtained materials. PG acted as a nucleating 
agent, affecting in turn PHBV/PG film surface morphology. The films were intensively colored, 
transparent and blocked UV-light. An increase in PG content decreased film transparency but it 
did not affect UV-blocking ability. Migration experiments have shown that films possess the 
potential to release PG into lipophilic food simulant media where it has exhibited antioxidative 
action. The obtained results suggest that PHBV/PG films can be potentially used as sustainable 
and active food packaging materials.",
publisher = "Institute for Information Technologies, University of Kragujevac, Serbia",
journal = "Book of Proceedings of the 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023)",
title = "UV-blocking sustainable food packaging based on polyhydroxyalkanoate and bacterial pigment prodigiosin",
pages = "1354-1351",
doi = "10.46793/ICCBI23.351P"
}
Ponjavić, M., Malagurski, I., Salević-Jelić, A., Lazić, J.,& Nikodinović-Runić, J.. (2023). UV-blocking sustainable food packaging based on polyhydroxyalkanoate and bacterial pigment prodigiosin. in Book of Proceedings of the 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023)
Institute for Information Technologies, University of Kragujevac, Serbia., 1351-1354.
https://doi.org/10.46793/ICCBI23.351P
Ponjavić M, Malagurski I, Salević-Jelić A, Lazić J, Nikodinović-Runić J. UV-blocking sustainable food packaging based on polyhydroxyalkanoate and bacterial pigment prodigiosin. in Book of Proceedings of the 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023). 2023;:1351-1354.
doi:10.46793/ICCBI23.351P .
Ponjavić, Marijana, Malagurski, Ivana, Salević-Jelić, Ana, Lazić, Jelena, Nikodinović-Runić, Jasmina, "UV-blocking sustainable food packaging based on polyhydroxyalkanoate and bacterial pigment prodigiosin" in Book of Proceedings of the 2nd International Conference on Chemo and Bioinformatics (ICCBIKG_2023) (2023):1351-1354,
https://doi.org/10.46793/ICCBI23.351P . .

Influence of different concentrations of Zn-carbonate phase on physical-chemical properties of antimicrobial agar composite films

Radovanović, Neda; Malagurski, Ivana; Lević, Steva; Nesić, Aleksandra; Cabrera-Barjas, Gustavo; Kalušević, Ana; Nedović, Viktor; Pavlović, Vladimir; Dimitrijević-Branković, Suzana

(Elsevier, Amsterdam, 2019)

TY  - JOUR
AU  - Radovanović, Neda
AU  - Malagurski, Ivana
AU  - Lević, Steva
AU  - Nesić, Aleksandra
AU  - Cabrera-Barjas, Gustavo
AU  - Kalušević, Ana
AU  - Nedović, Viktor
AU  - Pavlović, Vladimir
AU  - Dimitrijević-Branković, Suzana
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4925
AB  - Agar-based composites with different Zn-carbonate mineral phase content were prepared by in situ mineralization and the solvent casting method. The mineral phase within the composite films was identified as hydrozincite, Zn-5(CO3)(2)(OH)(6). The presence of the mineral phase improved, both mechanical and water vapor permeability properties of the obtained composite films, in a concentration-dependent manner. The release of zinc ions from composite films is in accepted levels (up to 2.5%), and sufficient to provide complete inhibition growth of S. Aureus. The results of this study suggest that agar/Zn-carbonate composites could be potentially used as affordable, eco-friendly and functional materials with tunable properties for food packaging, agriculture or biomedical application. In situ procedure offers possibilities for tailoring the physical-chemical properties of composite films, by varying the Zn-mineral phase load.
PB  - Elsevier, Amsterdam
T2  - Materials Letters
T1  - Influence of different concentrations of Zn-carbonate phase on physical-chemical properties of antimicrobial agar composite films
VL  - 255
DO  - 10.1016/j.matlet.2019.126572
ER  - 
@article{
author = "Radovanović, Neda and Malagurski, Ivana and Lević, Steva and Nesić, Aleksandra and Cabrera-Barjas, Gustavo and Kalušević, Ana and Nedović, Viktor and Pavlović, Vladimir and Dimitrijević-Branković, Suzana",
year = "2019",
abstract = "Agar-based composites with different Zn-carbonate mineral phase content were prepared by in situ mineralization and the solvent casting method. The mineral phase within the composite films was identified as hydrozincite, Zn-5(CO3)(2)(OH)(6). The presence of the mineral phase improved, both mechanical and water vapor permeability properties of the obtained composite films, in a concentration-dependent manner. The release of zinc ions from composite films is in accepted levels (up to 2.5%), and sufficient to provide complete inhibition growth of S. Aureus. The results of this study suggest that agar/Zn-carbonate composites could be potentially used as affordable, eco-friendly and functional materials with tunable properties for food packaging, agriculture or biomedical application. In situ procedure offers possibilities for tailoring the physical-chemical properties of composite films, by varying the Zn-mineral phase load.",
publisher = "Elsevier, Amsterdam",
journal = "Materials Letters",
title = "Influence of different concentrations of Zn-carbonate phase on physical-chemical properties of antimicrobial agar composite films",
volume = "255",
doi = "10.1016/j.matlet.2019.126572"
}
Radovanović, N., Malagurski, I., Lević, S., Nesić, A., Cabrera-Barjas, G., Kalušević, A., Nedović, V., Pavlović, V.,& Dimitrijević-Branković, S.. (2019). Influence of different concentrations of Zn-carbonate phase on physical-chemical properties of antimicrobial agar composite films. in Materials Letters
Elsevier, Amsterdam., 255.
https://doi.org/10.1016/j.matlet.2019.126572
Radovanović N, Malagurski I, Lević S, Nesić A, Cabrera-Barjas G, Kalušević A, Nedović V, Pavlović V, Dimitrijević-Branković S. Influence of different concentrations of Zn-carbonate phase on physical-chemical properties of antimicrobial agar composite films. in Materials Letters. 2019;255.
doi:10.1016/j.matlet.2019.126572 .
Radovanović, Neda, Malagurski, Ivana, Lević, Steva, Nesić, Aleksandra, Cabrera-Barjas, Gustavo, Kalušević, Ana, Nedović, Viktor, Pavlović, Vladimir, Dimitrijević-Branković, Suzana, "Influence of different concentrations of Zn-carbonate phase on physical-chemical properties of antimicrobial agar composite films" in Materials Letters, 255 (2019),
https://doi.org/10.1016/j.matlet.2019.126572 . .
4
2
4

Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase

Radovanović, Neda; Malagurski, Ivana; Lević, Steva; Gordić, Milan; Petrović, Jelena; Pavlović, Vladimir; Mitrić, Miodrag; Nesić, Aleksandra; Dimitrijević-Branković, Suzana

(Pergamon-Elsevier Science Ltd, Oxford, 2019)

TY  - JOUR
AU  - Radovanović, Neda
AU  - Malagurski, Ivana
AU  - Lević, Steva
AU  - Gordić, Milan
AU  - Petrović, Jelena
AU  - Pavlović, Vladimir
AU  - Mitrić, Miodrag
AU  - Nesić, Aleksandra
AU  - Dimitrijević-Branković, Suzana
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4923
AB  - New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineralized agar films showed potential to be used for food packaging materials, agriculture or medical purposes.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - European Polymer Journal
T1  - Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase
EP  - 358
SP  - 352
VL  - 119
DO  - 10.1016/j.eurpolymj.2019.08.004
ER  - 
@article{
author = "Radovanović, Neda and Malagurski, Ivana and Lević, Steva and Gordić, Milan and Petrović, Jelena and Pavlović, Vladimir and Mitrić, Miodrag and Nesić, Aleksandra and Dimitrijević-Branković, Suzana",
year = "2019",
abstract = "New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineralized agar films showed potential to be used for food packaging materials, agriculture or medical purposes.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "European Polymer Journal",
title = "Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase",
pages = "358-352",
volume = "119",
doi = "10.1016/j.eurpolymj.2019.08.004"
}
Radovanović, N., Malagurski, I., Lević, S., Gordić, M., Petrović, J., Pavlović, V., Mitrić, M., Nesić, A.,& Dimitrijević-Branković, S.. (2019). Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. in European Polymer Journal
Pergamon-Elsevier Science Ltd, Oxford., 119, 352-358.
https://doi.org/10.1016/j.eurpolymj.2019.08.004
Radovanović N, Malagurski I, Lević S, Gordić M, Petrović J, Pavlović V, Mitrić M, Nesić A, Dimitrijević-Branković S. Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. in European Polymer Journal. 2019;119:352-358.
doi:10.1016/j.eurpolymj.2019.08.004 .
Radovanović, Neda, Malagurski, Ivana, Lević, Steva, Gordić, Milan, Petrović, Jelena, Pavlović, Vladimir, Mitrić, Miodrag, Nesić, Aleksandra, Dimitrijević-Branković, Suzana, "Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase" in European Polymer Journal, 119 (2019):352-358,
https://doi.org/10.1016/j.eurpolymj.2019.08.004 . .
3
7
5
8

Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application

Malagurski, Ivana; Lević, Steva; Mitrić, Miodrag; Pavlović, Vladimir; Dimitrijević-Branković, Suzana

(Elsevier Science Bv, Amsterdam, 2018)

TY  - JOUR
AU  - Malagurski, Ivana
AU  - Lević, Steva
AU  - Mitrić, Miodrag
AU  - Pavlović, Vladimir
AU  - Dimitrijević-Branković, Suzana
PY  - 2018
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4690
AB  - Two bimetallic (Zn/Cu) alginate based nanocomposites, impregnated with carbonate or phosphate mineral phase, were prepared by a facile procedure. Mineralized samples exhibited different morphologies and properties when compared to the non-mineralized sample. Antimicrobial testing against Escherichia coil, Staphylococcus aureus and Candida albicans showed that mineralized samples are more efficient than non-mineralized in elimination of microorganisms. The results of this study suggest that bimetallic mineralized alginates could be potentially used as affordable, easy to produce antimicrobial materials.
PB  - Elsevier Science Bv, Amsterdam
T2  - Materials Letters
T1  - Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application
EP  - 36
SP  - 32
VL  - 212
DO  - 10.1016/j.matlet.2017.10.046
ER  - 
@article{
author = "Malagurski, Ivana and Lević, Steva and Mitrić, Miodrag and Pavlović, Vladimir and Dimitrijević-Branković, Suzana",
year = "2018",
abstract = "Two bimetallic (Zn/Cu) alginate based nanocomposites, impregnated with carbonate or phosphate mineral phase, were prepared by a facile procedure. Mineralized samples exhibited different morphologies and properties when compared to the non-mineralized sample. Antimicrobial testing against Escherichia coil, Staphylococcus aureus and Candida albicans showed that mineralized samples are more efficient than non-mineralized in elimination of microorganisms. The results of this study suggest that bimetallic mineralized alginates could be potentially used as affordable, easy to produce antimicrobial materials.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Materials Letters",
title = "Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application",
pages = "36-32",
volume = "212",
doi = "10.1016/j.matlet.2017.10.046"
}
Malagurski, I., Lević, S., Mitrić, M., Pavlović, V.,& Dimitrijević-Branković, S.. (2018). Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application. in Materials Letters
Elsevier Science Bv, Amsterdam., 212, 32-36.
https://doi.org/10.1016/j.matlet.2017.10.046
Malagurski I, Lević S, Mitrić M, Pavlović V, Dimitrijević-Branković S. Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application. in Materials Letters. 2018;212:32-36.
doi:10.1016/j.matlet.2017.10.046 .
Malagurski, Ivana, Lević, Steva, Mitrić, Miodrag, Pavlović, Vladimir, Dimitrijević-Branković, Suzana, "Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application" in Materials Letters, 212 (2018):32-36,
https://doi.org/10.1016/j.matlet.2017.10.046 . .
17
9
16

Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites

Malagurski, Ivana; Lević, Steva; Pantić, Milena; Matijasević, Danka; Mitrić, Miodrag; Pavlović, Vladimir; Dimitrijević-Branković, Suzana

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Malagurski, Ivana
AU  - Lević, Steva
AU  - Pantić, Milena
AU  - Matijasević, Danka
AU  - Mitrić, Miodrag
AU  - Pavlović, Vladimir
AU  - Dimitrijević-Branković, Suzana
PY  - 2017
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4336
AB  - New bioactive and antimicrobial biomaterials were produced by alginate-mediated biomineralization with Zn-mineral phase. The synthesis procedure is simple, cost-effective and resulted in. two different Zn-mineralized alginate nanocomposites, Zn-carbonate/Zn-alginate and Zn-phosphate/Zn-alginate. The presence of Zn-mineral phase and its type, have significantly affected nanocomposite morphology, stability, total metallic loading and potential to release Zn(II) in physiological environment. Antimicrobial experiments showed that both types of Zn-mineralized nanocomposites exhibit strong antimicrobial effect against Escherichia coli, Staphylococcus aureus and Candida albicans. These results suggest that alginate biomineralization, where minerals are salts of essential metallic ions like Zn(II), represents a'good strategy for designing multifunctional biomaterials for potential biomedical applications.
PB  - Elsevier Sci Ltd, Oxford
T2  - Carbohydrate Polymers
T1  - Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites
EP  - 321
SP  - 313
VL  - 165
DO  - 10.1016/j.carbpol.2017.02.064
ER  - 
@article{
author = "Malagurski, Ivana and Lević, Steva and Pantić, Milena and Matijasević, Danka and Mitrić, Miodrag and Pavlović, Vladimir and Dimitrijević-Branković, Suzana",
year = "2017",
abstract = "New bioactive and antimicrobial biomaterials were produced by alginate-mediated biomineralization with Zn-mineral phase. The synthesis procedure is simple, cost-effective and resulted in. two different Zn-mineralized alginate nanocomposites, Zn-carbonate/Zn-alginate and Zn-phosphate/Zn-alginate. The presence of Zn-mineral phase and its type, have significantly affected nanocomposite morphology, stability, total metallic loading and potential to release Zn(II) in physiological environment. Antimicrobial experiments showed that both types of Zn-mineralized nanocomposites exhibit strong antimicrobial effect against Escherichia coli, Staphylococcus aureus and Candida albicans. These results suggest that alginate biomineralization, where minerals are salts of essential metallic ions like Zn(II), represents a'good strategy for designing multifunctional biomaterials for potential biomedical applications.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Carbohydrate Polymers",
title = "Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites",
pages = "321-313",
volume = "165",
doi = "10.1016/j.carbpol.2017.02.064"
}
Malagurski, I., Lević, S., Pantić, M., Matijasević, D., Mitrić, M., Pavlović, V.,& Dimitrijević-Branković, S.. (2017). Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. in Carbohydrate Polymers
Elsevier Sci Ltd, Oxford., 165, 313-321.
https://doi.org/10.1016/j.carbpol.2017.02.064
Malagurski I, Lević S, Pantić M, Matijasević D, Mitrić M, Pavlović V, Dimitrijević-Branković S. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. in Carbohydrate Polymers. 2017;165:313-321.
doi:10.1016/j.carbpol.2017.02.064 .
Malagurski, Ivana, Lević, Steva, Pantić, Milena, Matijasević, Danka, Mitrić, Miodrag, Pavlović, Vladimir, Dimitrijević-Branković, Suzana, "Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites" in Carbohydrate Polymers, 165 (2017):313-321,
https://doi.org/10.1016/j.carbpol.2017.02.064 . .
42
20
45

Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties

Malagurski, Ivana; Lević, Steva; Nesić, Aleksandra; Mitrić, Miodrag; Pavlović, Vladimir; Dimitrijević-Branković, Suzana

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Malagurski, Ivana
AU  - Lević, Steva
AU  - Nesić, Aleksandra
AU  - Mitrić, Miodrag
AU  - Pavlović, Vladimir
AU  - Dimitrijević-Branković, Suzana
PY  - 2017
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4493
AB  - New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials.
PB  - Elsevier Sci Ltd, Oxford
T2  - Carbohydrate Polymers
T1  - Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties
EP  - 62
SP  - 55
VL  - 175
DO  - 10.1016/j.carbpol.2017.07.064
ER  - 
@article{
author = "Malagurski, Ivana and Lević, Steva and Nesić, Aleksandra and Mitrić, Miodrag and Pavlović, Vladimir and Dimitrijević-Branković, Suzana",
year = "2017",
abstract = "New mineralized, agar-based nanocomposite films (Zn-carbonate and Zn-phosphate/agar) were produced by a combination of in situ precipitation and a casting method. The presence of minerals significantly influenced the morphology, properties and functionality of the obtained nanocomposites. Reinforcement with the Zn-mineral phase improved the mechanical properties of the carbonate-mineralized films, but had a negligible effect on the phosphate-mineralized samples. Both nanocomposites showed improved optical and thermal properties, better Zn(II) release potential in a slightly acidic environment and exhibited antimicrobial activity against S. aureus. These results suggest that Zn-mineralized agar nanocomposite films could be potentially used as affordable, eco-friendly and active food packaging materials.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Carbohydrate Polymers",
title = "Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties",
pages = "62-55",
volume = "175",
doi = "10.1016/j.carbpol.2017.07.064"
}
Malagurski, I., Lević, S., Nesić, A., Mitrić, M., Pavlović, V.,& Dimitrijević-Branković, S.. (2017). Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. in Carbohydrate Polymers
Elsevier Sci Ltd, Oxford., 175, 55-62.
https://doi.org/10.1016/j.carbpol.2017.07.064
Malagurski I, Lević S, Nesić A, Mitrić M, Pavlović V, Dimitrijević-Branković S. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. in Carbohydrate Polymers. 2017;175:55-62.
doi:10.1016/j.carbpol.2017.07.064 .
Malagurski, Ivana, Lević, Steva, Nesić, Aleksandra, Mitrić, Miodrag, Pavlović, Vladimir, Dimitrijević-Branković, Suzana, "Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties" in Carbohydrate Polymers, 175 (2017):55-62,
https://doi.org/10.1016/j.carbpol.2017.07.064 . .
63
32
62