University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

TiO2 Nanotubes Film/FTO Glass Interface: Thermal Treatment Effects

Thumbnail
2022
TiO2_Nanotubes_FilmFTO_pub_2022.pdf (1.034Mb)
Authors
Vujančević, Jelena
Bjelajac, Anđelika
Veltruska, Katerina
Matolin, Vladimir
Siketić, Zdravko
Provatas, Georgios
Jakšić, Milko
Stan, George E.
Socol, Gabriel
Mihailescu, Ion N.
Pavlović, Vladimir B.
Janaćković, Đorđe
Article (Published version)
Metadata
Show full item record
Abstract
Pure Ti films deposited by radio-frequency magnetron sputtering on FTO glass were anodized to fabricate TiO2 nanotubes (NTs) arrays. The TiO2 NTs/FTO samples were sintered at 450, 550 and 630o C, in ambient air. The thermal treatment did not influence the crystal phase composition, preserving in all cases the anatase single phase. As expected, the crystalline anatase quality improved with the annealing temperature. Nevertheless, slight differences in nanotubular morphology, such as the appearance of grains inside the walls, were observed in the case of the sample sintered at 630o C. Chemical analysis by X-ray Photoelectron Spectroscopy of annealed samples revealed the presence of Sn inside TiO2 NTs, due to diffusion of Sn from the substrate to TiO2. For the substrate was used FTO glass whose top layer consists of SnO2 doped with F. Rutherford Backscattering Spectrometry and Time-of-Flight Elastic Recoil Detection Analysis were carried out to study the elemental depth profile of the fil...ms. It was found that the temperature of sintering controls the Sn diffusion inside TiO2 film. Sn atoms diffuse towards the TiO2 NTs surface for the samples annealed at 450 and 550oC. The diffusion is however hindered in the case of the heat treatment at 630o C. Besides, the Ti diffusion into the SnO2 underlayer was observed, together with the formation of TiO2/SnO2 interfaces. One then expected but not a great difference in absorption between samples, since all contained anatase phase, as confirmed by Diffuse Reflectance Spectroscopy. A higher amount of Sn was however detected for the sample annealed at 550o C, which accounts for a slight red absorption shift. The importance of controlling the annealing parameters of the anodized TiO2/FTO structures was highlighted through the formation of TiO2-SnO2 interfaces and the Sn insertion from FTO, which can play an essential role in increasing the photoperformances of TiO2 NTs/FTO based structures of photovoltaic cells. © 2022 Authors. Published by association for ETRAN Society.

Keywords:
Sintering / Sn diffusion / Sn-TiO2 doping / ToF-ERDA / XPS
Source:
Science of Sintering, 2022, 54, 2, 235-248
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)

DOI: 10.2298/SOS2202235V

ISSN: 0350-820X

[ Google Scholar ]
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/6115
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet
TY  - JOUR
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketić, Zdravko
AU  - Provatas, Georgios
AU  - Jakšić, Milko
AU  - Stan, George E.
AU  - Socol, Gabriel
AU  - Mihailescu, Ion N.
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2022
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6115
AB  - Pure Ti films deposited by radio-frequency magnetron sputtering on FTO glass were anodized to fabricate TiO2 nanotubes (NTs) arrays. The TiO2 NTs/FTO samples were sintered at 450, 550 and 630o C, in ambient air. The thermal treatment did not influence the crystal phase composition, preserving in all cases the anatase single phase. As expected, the crystalline anatase quality improved with the annealing temperature. Nevertheless, slight differences in nanotubular morphology, such as the appearance of grains inside the walls, were observed in the case of the sample sintered at 630o C. Chemical analysis by X-ray Photoelectron Spectroscopy of annealed samples revealed the presence of Sn inside TiO2 NTs, due to diffusion of Sn from the substrate to TiO2. For the substrate was used FTO glass whose top layer consists of SnO2 doped with F. Rutherford Backscattering Spectrometry and Time-of-Flight Elastic Recoil Detection Analysis were carried out to study the elemental depth profile of the films. It was found that the temperature of sintering controls the Sn diffusion inside TiO2 film. Sn atoms diffuse towards the TiO2 NTs surface for the samples annealed at 450 and 550oC. The diffusion is however hindered in the case of the heat treatment at 630o C. Besides, the Ti diffusion into the SnO2 underlayer was observed, together with the formation of TiO2/SnO2 interfaces. One then expected but not a great difference in absorption between samples, since all contained anatase phase, as confirmed by Diffuse Reflectance Spectroscopy. A higher amount of Sn was however detected for the sample annealed at 550o C, which accounts for a slight red absorption shift. The importance of controlling the annealing parameters of the anodized TiO2/FTO structures was highlighted through the formation of TiO2-SnO2 interfaces and the Sn insertion from FTO, which can play an essential role in increasing the photoperformances of TiO2 NTs/FTO based structures of photovoltaic cells. © 2022 Authors. Published by association for ETRAN Society.
T2  - Science of Sintering
T2  - Science of Sintering
T1  - TiO2 Nanotubes Film/FTO Glass Interface: Thermal Treatment Effects
EP  - 248
IS  - 2
SP  - 235
VL  - 54
DO  - 10.2298/SOS2202235V
ER  - 
@article{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Veltruska, Katerina and Matolin, Vladimir and Siketić, Zdravko and Provatas, Georgios and Jakšić, Milko and Stan, George E. and Socol, Gabriel and Mihailescu, Ion N. and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2022",
abstract = "Pure Ti films deposited by radio-frequency magnetron sputtering on FTO glass were anodized to fabricate TiO2 nanotubes (NTs) arrays. The TiO2 NTs/FTO samples were sintered at 450, 550 and 630o C, in ambient air. The thermal treatment did not influence the crystal phase composition, preserving in all cases the anatase single phase. As expected, the crystalline anatase quality improved with the annealing temperature. Nevertheless, slight differences in nanotubular morphology, such as the appearance of grains inside the walls, were observed in the case of the sample sintered at 630o C. Chemical analysis by X-ray Photoelectron Spectroscopy of annealed samples revealed the presence of Sn inside TiO2 NTs, due to diffusion of Sn from the substrate to TiO2. For the substrate was used FTO glass whose top layer consists of SnO2 doped with F. Rutherford Backscattering Spectrometry and Time-of-Flight Elastic Recoil Detection Analysis were carried out to study the elemental depth profile of the films. It was found that the temperature of sintering controls the Sn diffusion inside TiO2 film. Sn atoms diffuse towards the TiO2 NTs surface for the samples annealed at 450 and 550oC. The diffusion is however hindered in the case of the heat treatment at 630o C. Besides, the Ti diffusion into the SnO2 underlayer was observed, together with the formation of TiO2/SnO2 interfaces. One then expected but not a great difference in absorption between samples, since all contained anatase phase, as confirmed by Diffuse Reflectance Spectroscopy. A higher amount of Sn was however detected for the sample annealed at 550o C, which accounts for a slight red absorption shift. The importance of controlling the annealing parameters of the anodized TiO2/FTO structures was highlighted through the formation of TiO2-SnO2 interfaces and the Sn insertion from FTO, which can play an essential role in increasing the photoperformances of TiO2 NTs/FTO based structures of photovoltaic cells. © 2022 Authors. Published by association for ETRAN Society.",
journal = "Science of Sintering, Science of Sintering",
title = "TiO2 Nanotubes Film/FTO Glass Interface: Thermal Treatment Effects",
pages = "248-235",
number = "2",
volume = "54",
doi = "10.2298/SOS2202235V"
}
Vujančević, J., Bjelajac, A., Veltruska, K., Matolin, V., Siketić, Z., Provatas, G., Jakšić, M., Stan, G. E., Socol, G., Mihailescu, I. N., Pavlović, V. B.,& Janaćković, Đ.. (2022). TiO2 Nanotubes Film/FTO Glass Interface: Thermal Treatment Effects. in Science of Sintering, 54(2), 235-248.
https://doi.org/10.2298/SOS2202235V
Vujančević J, Bjelajac A, Veltruska K, Matolin V, Siketić Z, Provatas G, Jakšić M, Stan GE, Socol G, Mihailescu IN, Pavlović VB, Janaćković Đ. TiO2 Nanotubes Film/FTO Glass Interface: Thermal Treatment Effects. in Science of Sintering. 2022;54(2):235-248.
doi:10.2298/SOS2202235V .
Vujančević, Jelena, Bjelajac, Anđelika, Veltruska, Katerina, Matolin, Vladimir, Siketić, Zdravko, Provatas, Georgios, Jakšić, Milko, Stan, George E., Socol, Gabriel, Mihailescu, Ion N., Pavlović, Vladimir B., Janaćković, Đorđe, "TiO2 Nanotubes Film/FTO Glass Interface: Thermal Treatment Effects" in Science of Sintering, 54, no. 2 (2022):235-248,
https://doi.org/10.2298/SOS2202235V . .

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB