University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

[Characterization of deposited plasma spray nicralcoy2o3 coating layers on almg1 alloy substrates] [Karakterizacija deponovanih slojeva plazma sprej prevlake nicralcoy2o3 na podlogama od legure almg1]

Thumbnail
2021
Characterization_of_deposited_pub_2021.pdf (558.2Kb)
Authors
Mrdak, Mihailo
Lačnjevac, Časlav
Rakin, Marko
Janaćković, Đorđe
Veljić, Darko
Bajić, Darko
Article (Published version)
Metadata
Show full item record
Abstract
In this paper, analyzed are the effects of the plasma spray distance on the microstructure and mechanical properties of the NiCrAlCoY2O3 coating layers deposited at atmospheric pressure. The microstructure and mechanical properties of the coating layers are under the influence of the interaction of plasma particles (ions and electrons) with powder particles, providing the transfer of velocity and temperature of the plasma particles onto the powder particles. The effect of the interaction is directly dependent on the time the powder particles were present in the plasma which is defined by distance of the plasma gun from the substrate, depending on the granulation of the powder, the melting point and specific gravity. In order to obtain homogeneous and denser coating layers with high adhesion, in the experiment three distances from the substrate were used: 95 mm, 105 mm and 115 mm. The layers were deposited on thin sheets of AlMg1 aluminum thickness of 0.6 mm. Evaluation of mechanical pr...operties of the layers was carried out by examining microhardness using the HV0.1 method and the bond strength by tensile testing. The morphology of the powder particles was examined on the SEM, while the microstructure of the layers was evaluated under a light microscope in accordance with the Pratt Whitney standard. The results of the experiment showed that the distance from the substrate substantially influenced the structure and mechanical properties of the coating layers. The best deposited layers were examined in the system with the ZrO224%MgO ceramic coating, which have proved to be reliable protectionfrom high temperature and abrasive rocket jet fuel.

Keywords:
Atmospheric plasma spray (APS) / Bond strength / Microhardness / Microstructure
Source:
Materials Protection, 2021, 2021, 1, 34-40
Publisher:
  • Engineers Society for Corrosion
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)

DOI: 10.5937/zasmat2101034M

ISSN: 0351-9465

Scopus: 2-s2.0-85111598078
[ Google Scholar ]
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/5913
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB