University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of halloysite modification for improvement of mechanical properties of the epoxy based nanocomposites

Authorized Users Only
2021
Authors
Jelić, Aleksandra
Marinković, Aleksandar
Sekulić, Milica
Dikić, Stefan
Ugrinović, Vukašin
Pavlović, Vladimir
Putić, Slaviša
article (publishedVersion)
Metadata
Show full item record
Abstract
In this study, halloysite nanotubes (HNT) were modified by: 3-glycidyloxypropyltrimethoxysilane (GLYMO), 3-aminopropyltrimethoxysilane (APTES), and 2,2-Bis[4-(glycidyloxy) phenyl] propane (DGEBA), and incorporated in the epoxy resin matrix to enhance its mechanical properties. The HNT/epoxy nanocomposite materials were prepared by mixing different ratios of untreated/treated HNT with neat epoxy resin. Characterization of untreated/treated HNT was performed by Fourier-transformation infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The quantity of grafted molecules and thermal stability of newly synthesized materials were determined by thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis. Tensile properties of newly synthesized materials were compared, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis of the fracture surfaces were performed. Incorporation of APTES modified HNT (HNTAPT) and two-step modification APTES fo...llowed by DGEBA (HNTAPTDG) has increased the tensile strength of the nanocomposite materials up to 72% and 61%, and strain at break up to 1082% and 1216%, respectively, compared to neat epoxy. It was concluded that the modification of HNT contributed to the enhancement of the dispersion and the cross-linking in the epoxy resin matrix.

Keywords:
compatibilization / mechanical properties / mechanical properties / organoclay / reinforcement
Source:
Polymer Composites, 2021
Publisher:
  • John Wiley and Sons Inc
Funding / projects:
  • info:eu-repo/grantAgreement/MESTD/inst-2020/200287/RS// (RS-200287)

DOI: 10.1002/pc.25967

ISSN: 0272-8397

WoS: 000615954800001

Scopus: 2-s2.0-85100542752
[ Google Scholar ]
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/5812
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB