University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions

Thumbnail
2019
5063.pdf (9.784Mb)
Authors
Jeremić, Sanja
Djokić, Lidija
Ajdacić, Vladimir
Božinović, Nina
Pavlović, Vladimir
Manojlović, Dragan
Babu, Ramesh
Senthamaraikannan, Ramsankar
Rojas, Orlando
Opsenica, Igor
Nikodinović-Runić, Jasmina
Article (Published version)
Metadata
Show full item record
Abstract
Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L-1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4'-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nit...ro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.

Keywords:
Bacterial nanocellulose / Komagataeibacter medellinensis / Cross-coupling reactions, catalysis
Source:
International Journal of Biological Macromolecules, 2019, 129, 351-360
Publisher:
  • Elsevier, Amsterdam
Funding / projects:
  • The synthesis of aminoquinoline-based antimalarials and botulinum neurotoxin A inhibitors (RS-172008)
  • Microbial diversity study and characterization of beneficial environmental microorganisms (RS-173048)

DOI: 10.1016/j.ijbiomac.2019.01.154

ISSN: 0141-8130

PubMed: 30710586

WoS: 000466621200037

Scopus: 2-s2.0-85061444472
[ Google Scholar ]
26
15
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/5066
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet
TY  - JOUR
AU  - Jeremić, Sanja
AU  - Djokić, Lidija
AU  - Ajdacić, Vladimir
AU  - Božinović, Nina
AU  - Pavlović, Vladimir
AU  - Manojlović, Dragan
AU  - Babu, Ramesh
AU  - Senthamaraikannan, Ramsankar
AU  - Rojas, Orlando
AU  - Opsenica, Igor
AU  - Nikodinović-Runić, Jasmina
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5066
AB  - Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L-1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4'-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nitro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.
PB  - Elsevier, Amsterdam
T2  - International Journal of Biological Macromolecules
T1  - Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions
EP  - 360
SP  - 351
VL  - 129
DO  - 10.1016/j.ijbiomac.2019.01.154
ER  - 
@article{
author = "Jeremić, Sanja and Djokić, Lidija and Ajdacić, Vladimir and Božinović, Nina and Pavlović, Vladimir and Manojlović, Dragan and Babu, Ramesh and Senthamaraikannan, Ramsankar and Rojas, Orlando and Opsenica, Igor and Nikodinović-Runić, Jasmina",
year = "2019",
abstract = "Bacterial nanocellulose (BNC) emerged as an attractive advanced biomaterial that provides desirable properties such as high strength, lightweight, tailorable surface chemistry, hydrophilicity, and biodegradability. BNC was successfully obtained from a wide range of carbon sources including sugars derived from grass biomass using Komagataeibacter medellinensis ID13488 strain with yields up to 6 g L-1 in static fermentation. Produced BNC was utilized in straightforward catalyst preparation as a solid support for two different transition metals, palladium and copper with metal loading of 20 and 3 wt%, respectively. Sustainable catalysts were applied in the synthesis of valuable fine chemicals, such as biphenyl-4-amine and 4'-fluorobiphenyl-4-amine, used in drug discovery, perfumes and dye industries with excellent product yields of up to 99%. Pd/BNC catalyst was reused 4 times and applied in two consecutive reactions, Suzuki-Miyaura cross-coupling reaction followed by hydrogenation of nitro to amino group while Cu/BNC catalyst was examined in Chan-Lam coupling reaction. Overall, the environmentally benign process of obtaining nanocellulose from biomass, followed by its utilisation as a solid support in metal-catalysed reactions and its recovery has been described. These findings reveal that BNC is a good support material, and it can be used as a support for different catalytic systems.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Biological Macromolecules",
title = "Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions",
pages = "360-351",
volume = "129",
doi = "10.1016/j.ijbiomac.2019.01.154"
}
Jeremić, S., Djokić, L., Ajdacić, V., Božinović, N., Pavlović, V., Manojlović, D., Babu, R., Senthamaraikannan, R., Rojas, O., Opsenica, I.,& Nikodinović-Runić, J.. (2019). Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. in International Journal of Biological Macromolecules
Elsevier, Amsterdam., 129, 351-360.
https://doi.org/10.1016/j.ijbiomac.2019.01.154
Jeremić S, Djokić L, Ajdacić V, Božinović N, Pavlović V, Manojlović D, Babu R, Senthamaraikannan R, Rojas O, Opsenica I, Nikodinović-Runić J. Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. in International Journal of Biological Macromolecules. 2019;129:351-360.
doi:10.1016/j.ijbiomac.2019.01.154 .
Jeremić, Sanja, Djokić, Lidija, Ajdacić, Vladimir, Božinović, Nina, Pavlović, Vladimir, Manojlović, Dragan, Babu, Ramesh, Senthamaraikannan, Ramsankar, Rojas, Orlando, Opsenica, Igor, Nikodinović-Runić, Jasmina, "Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions" in International Journal of Biological Macromolecules, 129 (2019):351-360,
https://doi.org/10.1016/j.ijbiomac.2019.01.154 . .

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB