University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Effects of Cholesterol and -Sitosterol on the Liposome Membrane Characteristics

No Thumbnail
Authors
Jovanović, Aleksandra A.
Balanc, Bojana
Ota, Ajda
Grabnar, Pegi Ahlin
Djordjević, Verica B.
Savikin, Katarina
Bugarski, Branko
Nedović, Viktor
Ulrih, Nataša Poklar
Article (Published version)
Metadata
Show full item record
Abstract
The influence of different phospholipid types (pure phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, and one commercial phospholipid mixture, Lipoid H100), sterol types (cholesterol vs. -sitosterol), and various sterol concentrations (5-50mol%) on liposomal membrane fluidity, thermotropic properties, liposome size, zeta potential, and lipid oxidation kinetics using fluorescent lipid probe BODIPY 581/591 C-11 (4,4-difluoro-5-[4-phenyl-1,3-butadienyl]-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid) are investigated. DPPC bilayer is more rigid than POPC and phospholipids mixture membranes. Pure DPPC gives the smallest liposomes, while liposomes of Lipoid H100 have the largest diameter. Both sterols reduce membrane fluidity of all liposomes, increase absolute zeta potential, cause significant changes in particle size, and decrease phase transition temperature (T-m) and enthalpy of DPPC. POPC/-sitosterol liposomes exhi...bit the most significant lipid oxidation of the lipophilic probe. Along with beneficial effects of phytosterols on human health, better membrane fluidity, more favorable and stabilizing interactions with phospholipids, smaller vesicle size, and enhanced physical stability in comparison to cholesterol are some of the encouraging results for the use of -sitosterol in liposome formulations for potential application in foods, pharmaceutics, and cosmetics.Practical Applications: Adjusting the composition of liposomal membrane (lipid type, sterol type, and concentration) can be used as a tool to control membrane fluidity, permeability, and thermotropic properties, and thus predict release properties, physical, thermal, and oxidative stability. A commercial phospholipid mixture of different natural phospholipids with impurities creates less uniform liposomal membrane that is characterized by higher fluidity in comparison to DPPC. The type of phospholipid has huge influence on MLVs size. -sitosterol, which is a phytosterol with beneficial effects on human health can be used as a replacement for cholesterol in liposomal formulations, but with the following in mind: -sitosterol reduces fluidity of the phospholipid bilayer to a lesser extent than cholesterol, -sitosterol gives smaller MLVs than cholesterol, DPPC/-sitosterol SUVs are bigger than 100nm in diameter (relevant for intravenous administration), MLVs with 30mol% of -sitosterol can be considered as physically stable (unlike those with cholesterol), irrespective to the phospholipid type.

Keywords:
beta-sitosterol / cholesterol / fluidity / liposomes / size
Source:
European Journal of Lipid Science and Technology, 2018, 120, 9
Publisher:
  • Wiley, Hoboken
Funding / projects:
  • Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness (RS-46010)

DOI: 10.1002/ejlt.201800039

ISSN: 1438-7697

WoS: 000443386500004

Scopus: 2-s2.0-85052744315
[ Google Scholar ]
51
30
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/4666
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet
TY  - JOUR
AU  - Jovanović, Aleksandra A.
AU  - Balanc, Bojana
AU  - Ota, Ajda
AU  - Grabnar, Pegi Ahlin
AU  - Djordjević, Verica B.
AU  - Savikin, Katarina
AU  - Bugarski, Branko
AU  - Nedović, Viktor
AU  - Ulrih, Nataša Poklar
PY  - 2018
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4666
AB  - The influence of different phospholipid types (pure phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, and one commercial phospholipid mixture, Lipoid H100), sterol types (cholesterol vs. -sitosterol), and various sterol concentrations (5-50mol%) on liposomal membrane fluidity, thermotropic properties, liposome size, zeta potential, and lipid oxidation kinetics using fluorescent lipid probe BODIPY 581/591 C-11 (4,4-difluoro-5-[4-phenyl-1,3-butadienyl]-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid) are investigated. DPPC bilayer is more rigid than POPC and phospholipids mixture membranes. Pure DPPC gives the smallest liposomes, while liposomes of Lipoid H100 have the largest diameter. Both sterols reduce membrane fluidity of all liposomes, increase absolute zeta potential, cause significant changes in particle size, and decrease phase transition temperature (T-m) and enthalpy of DPPC. POPC/-sitosterol liposomes exhibit the most significant lipid oxidation of the lipophilic probe. Along with beneficial effects of phytosterols on human health, better membrane fluidity, more favorable and stabilizing interactions with phospholipids, smaller vesicle size, and enhanced physical stability in comparison to cholesterol are some of the encouraging results for the use of -sitosterol in liposome formulations for potential application in foods, pharmaceutics, and cosmetics.Practical Applications: Adjusting the composition of liposomal membrane (lipid type, sterol type, and concentration) can be used as a tool to control membrane fluidity, permeability, and thermotropic properties, and thus predict release properties, physical, thermal, and oxidative stability. A commercial phospholipid mixture of different natural phospholipids with impurities creates less uniform liposomal membrane that is characterized by higher fluidity in comparison to DPPC. The type of phospholipid has huge influence on MLVs size. -sitosterol, which is a phytosterol with beneficial effects on human health can be used as a replacement for cholesterol in liposomal formulations, but with the following in mind: -sitosterol reduces fluidity of the phospholipid bilayer to a lesser extent than cholesterol, -sitosterol gives smaller MLVs than cholesterol, DPPC/-sitosterol SUVs are bigger than 100nm in diameter (relevant for intravenous administration), MLVs with 30mol% of -sitosterol can be considered as physically stable (unlike those with cholesterol), irrespective to the phospholipid type.
PB  - Wiley, Hoboken
T2  - European Journal of Lipid Science and Technology
T1  - Comparative Effects of Cholesterol and -Sitosterol on the Liposome Membrane Characteristics
IS  - 9
VL  - 120
DO  - 10.1002/ejlt.201800039
ER  - 
@article{
author = "Jovanović, Aleksandra A. and Balanc, Bojana and Ota, Ajda and Grabnar, Pegi Ahlin and Djordjević, Verica B. and Savikin, Katarina and Bugarski, Branko and Nedović, Viktor and Ulrih, Nataša Poklar",
year = "2018",
abstract = "The influence of different phospholipid types (pure phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, and one commercial phospholipid mixture, Lipoid H100), sterol types (cholesterol vs. -sitosterol), and various sterol concentrations (5-50mol%) on liposomal membrane fluidity, thermotropic properties, liposome size, zeta potential, and lipid oxidation kinetics using fluorescent lipid probe BODIPY 581/591 C-11 (4,4-difluoro-5-[4-phenyl-1,3-butadienyl]-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid) are investigated. DPPC bilayer is more rigid than POPC and phospholipids mixture membranes. Pure DPPC gives the smallest liposomes, while liposomes of Lipoid H100 have the largest diameter. Both sterols reduce membrane fluidity of all liposomes, increase absolute zeta potential, cause significant changes in particle size, and decrease phase transition temperature (T-m) and enthalpy of DPPC. POPC/-sitosterol liposomes exhibit the most significant lipid oxidation of the lipophilic probe. Along with beneficial effects of phytosterols on human health, better membrane fluidity, more favorable and stabilizing interactions with phospholipids, smaller vesicle size, and enhanced physical stability in comparison to cholesterol are some of the encouraging results for the use of -sitosterol in liposome formulations for potential application in foods, pharmaceutics, and cosmetics.Practical Applications: Adjusting the composition of liposomal membrane (lipid type, sterol type, and concentration) can be used as a tool to control membrane fluidity, permeability, and thermotropic properties, and thus predict release properties, physical, thermal, and oxidative stability. A commercial phospholipid mixture of different natural phospholipids with impurities creates less uniform liposomal membrane that is characterized by higher fluidity in comparison to DPPC. The type of phospholipid has huge influence on MLVs size. -sitosterol, which is a phytosterol with beneficial effects on human health can be used as a replacement for cholesterol in liposomal formulations, but with the following in mind: -sitosterol reduces fluidity of the phospholipid bilayer to a lesser extent than cholesterol, -sitosterol gives smaller MLVs than cholesterol, DPPC/-sitosterol SUVs are bigger than 100nm in diameter (relevant for intravenous administration), MLVs with 30mol% of -sitosterol can be considered as physically stable (unlike those with cholesterol), irrespective to the phospholipid type.",
publisher = "Wiley, Hoboken",
journal = "European Journal of Lipid Science and Technology",
title = "Comparative Effects of Cholesterol and -Sitosterol on the Liposome Membrane Characteristics",
number = "9",
volume = "120",
doi = "10.1002/ejlt.201800039"
}
Jovanović, A. A., Balanc, B., Ota, A., Grabnar, P. A., Djordjević, V. B., Savikin, K., Bugarski, B., Nedović, V.,& Ulrih, N. P.. (2018). Comparative Effects of Cholesterol and -Sitosterol on the Liposome Membrane Characteristics. in European Journal of Lipid Science and Technology
Wiley, Hoboken., 120(9).
https://doi.org/10.1002/ejlt.201800039
Jovanović AA, Balanc B, Ota A, Grabnar PA, Djordjević VB, Savikin K, Bugarski B, Nedović V, Ulrih NP. Comparative Effects of Cholesterol and -Sitosterol on the Liposome Membrane Characteristics. in European Journal of Lipid Science and Technology. 2018;120(9).
doi:10.1002/ejlt.201800039 .
Jovanović, Aleksandra A., Balanc, Bojana, Ota, Ajda, Grabnar, Pegi Ahlin, Djordjević, Verica B., Savikin, Katarina, Bugarski, Branko, Nedović, Viktor, Ulrih, Nataša Poklar, "Comparative Effects of Cholesterol and -Sitosterol on the Liposome Membrane Characteristics" in European Journal of Lipid Science and Technology, 120, no. 9 (2018),
https://doi.org/10.1002/ejlt.201800039 . .

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB