University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria

Thumbnail
2018
4627.pdf (1.200Mb)
Authors
Marković, Zoran M.
Jovanović, Svetlana P.
Masković, Pavle Z.
Danko, Martin
Micusik, Matej
Pavlović, Vladimir
Milivojević, Dušan D.
Kleinova, Angela
Spitalsky, Zdeno
Todorović-Marković, Biljana
Article (Published version)
Metadata
Show full item record
Abstract
Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Prot...eus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.

Source:
RSC Advances, 2018, 8, 55, 31337-31347
Publisher:
  • Royal Soc Chemistry, Cambridge
Funding / projects:
  • SASPRO Programme project [1237/02/02-b]
  • SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists (EU-609427)
  • Slovak Academy of Sciences
  • Thin films of single wall carbon nanotubes and graphene for electronic application (RS-172003)
  • multilateral scientific and technological cooperation in the Danube region [DS021]

DOI: 10.1039/c8ra04664f

ISSN: 2046-2069

WoS: 000445221300012

Scopus: 2-s2.0-85053511885
[ Google Scholar ]
48
25
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/4630
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet
TY  - JOUR
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Masković, Pavle Z.
AU  - Danko, Martin
AU  - Micusik, Matej
AU  - Pavlović, Vladimir
AU  - Milivojević, Dušan D.
AU  - Kleinova, Angela
AU  - Spitalsky, Zdeno
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4630
AB  - Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria
EP  - 31347
IS  - 55
SP  - 31337
VL  - 8
DO  - 10.1039/c8ra04664f
ER  - 
@article{
author = "Marković, Zoran M. and Jovanović, Svetlana P. and Masković, Pavle Z. and Danko, Martin and Micusik, Matej and Pavlović, Vladimir and Milivojević, Dušan D. and Kleinova, Angela and Spitalsky, Zdeno and Todorović-Marković, Biljana",
year = "2018",
abstract = "Due to controversial reports concerning antibacterial activity of different graphene based materials it is very important to investigate their antibacterial action on a wide range of Gram-positive and Gram-negative bacteria. In this paper we have investigated the structure induced phototoxic antibacterial activity of four types of graphene based materials: graphene oxide (GO), graphene quantum dots (GQDs), carbon quantum dots (CQDs) and nitrogen doped carbon quantum dots (N-CQDs). Antibacterial activity was tested on 19 types of bacteria. It is found that nanometer-size CQDs and N-CQDs are the most potent agents whereas micrometer-size GO has very poor antibacterial activity. Electron paramagnetic resonance measurements confirmed photodynamic production of singlet oxygen for all types of used quantum dots. Detailed analysis has shown that N-CQDs are an excellent photodynamic antibacterial agent for treatment of bacterial infections induced by Enterobacter aerogenes (E. aerogenes), Proteus mirabilis (P. mirabilis), Staphylococcus saprophyticus (S. saprophyticus), Listeria monocytogenes (L. monocytogenes), Salmonella typhimurium (S. typhimurium) and Klebsiella pneumoniae.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria",
pages = "31347-31337",
number = "55",
volume = "8",
doi = "10.1039/c8ra04664f"
}
Marković, Z. M., Jovanović, S. P., Masković, P. Z., Danko, M., Micusik, M., Pavlović, V., Milivojević, D. D., Kleinova, A., Spitalsky, Z.,& Todorović-Marković, B.. (2018). Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances
Royal Soc Chemistry, Cambridge., 8(55), 31337-31347.
https://doi.org/10.1039/c8ra04664f
Marković ZM, Jovanović SP, Masković PZ, Danko M, Micusik M, Pavlović V, Milivojević DD, Kleinova A, Spitalsky Z, Todorović-Marković B. Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. in RSC Advances. 2018;8(55):31337-31347.
doi:10.1039/c8ra04664f .
Marković, Zoran M., Jovanović, Svetlana P., Masković, Pavle Z., Danko, Martin, Micusik, Matej, Pavlović, Vladimir, Milivojević, Dušan D., Kleinova, Angela, Spitalsky, Zdeno, Todorović-Marković, Biljana, "Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria" in RSC Advances, 8, no. 55 (2018):31337-31347,
https://doi.org/10.1039/c8ra04664f . .

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB