University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials

Authorized Users Only
2017
Authors
Terzić, Anja
Obradović, Nina
Stojanović, Jovica
Pavlović, Vladimir
Andrić, Ljubiša
Olcan, Dragan
Djordjević, Antonije
Article (Published version)
Metadata
Show full item record
Abstract
The focus of the study was on providing insights into interconnections between sintering and development of the crystalline microstructure, and consequently variations in dielectric behavior of four steatites fabricated from a low-cost raw material, i.e. talc. The changes, induced by the alternations of the binders (bentonite, kaolin clay) and fluxing agents (BaCO3, feldspar), were monitored in the temperature range 1000 degrees to 1250 degrees C in which complete densification and re-crystallization of the investigated structures were accomplished. The critical points in the synthesis of steatite materials were assessed by instrumental analyses. Crystallinity changes and mineral phase transition during sintering were monitored by X-ray diffraction technique. Microstructural visualization of the samples and the spatial arrangements of individual chemical elements were achieved via scanning electron microscopy accompanied with EDS mapping. The thermal stability was observed on the green... mixtures using differential thermal and thermo gravimetric analyses. Electrical measurements recorded variations of the dielectric constant (epsilon(r)) and loss tangent (tan delta) as a function of the sintering temperature. The investigation highlighted critical design points, as well as the optimal combinations of the raw materials for production of the steatite ceramics for advanced electrical engineering applications.

Keywords:
Sintering / Electron microscopy / Microstructure-final / X-ray methods / Dielectric properties / MgO / Insulators
Source:
Ceramics International, 2017, 43, 16, 13264-13275
Publisher:
  • Elsevier Sci Ltd, Oxford
Funding / projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
  • Development and application of multifunctional materials using domestic raw materials in upgraded processing lines (RS-45008)

DOI: 10.1016/j.ceramint.2017.07.024

ISSN: 0272-8842

WoS: 000411299300031

Scopus: 2-s2.0-85021727877
[ Google Scholar ]
7
4
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/4491
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet
TY  - JOUR
AU  - Terzić, Anja
AU  - Obradović, Nina
AU  - Stojanović, Jovica
AU  - Pavlović, Vladimir
AU  - Andrić, Ljubiša
AU  - Olcan, Dragan
AU  - Djordjević, Antonije
PY  - 2017
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4491
AB  - The focus of the study was on providing insights into interconnections between sintering and development of the crystalline microstructure, and consequently variations in dielectric behavior of four steatites fabricated from a low-cost raw material, i.e. talc. The changes, induced by the alternations of the binders (bentonite, kaolin clay) and fluxing agents (BaCO3, feldspar), were monitored in the temperature range 1000 degrees to 1250 degrees C in which complete densification and re-crystallization of the investigated structures were accomplished. The critical points in the synthesis of steatite materials were assessed by instrumental analyses. Crystallinity changes and mineral phase transition during sintering were monitored by X-ray diffraction technique. Microstructural visualization of the samples and the spatial arrangements of individual chemical elements were achieved via scanning electron microscopy accompanied with EDS mapping. The thermal stability was observed on the green mixtures using differential thermal and thermo gravimetric analyses. Electrical measurements recorded variations of the dielectric constant (epsilon(r)) and loss tangent (tan delta) as a function of the sintering temperature. The investigation highlighted critical design points, as well as the optimal combinations of the raw materials for production of the steatite ceramics for advanced electrical engineering applications.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials
EP  - 13275
IS  - 16
SP  - 13264
VL  - 43
DO  - 10.1016/j.ceramint.2017.07.024
ER  - 
@article{
author = "Terzić, Anja and Obradović, Nina and Stojanović, Jovica and Pavlović, Vladimir and Andrić, Ljubiša and Olcan, Dragan and Djordjević, Antonije",
year = "2017",
abstract = "The focus of the study was on providing insights into interconnections between sintering and development of the crystalline microstructure, and consequently variations in dielectric behavior of four steatites fabricated from a low-cost raw material, i.e. talc. The changes, induced by the alternations of the binders (bentonite, kaolin clay) and fluxing agents (BaCO3, feldspar), were monitored in the temperature range 1000 degrees to 1250 degrees C in which complete densification and re-crystallization of the investigated structures were accomplished. The critical points in the synthesis of steatite materials were assessed by instrumental analyses. Crystallinity changes and mineral phase transition during sintering were monitored by X-ray diffraction technique. Microstructural visualization of the samples and the spatial arrangements of individual chemical elements were achieved via scanning electron microscopy accompanied with EDS mapping. The thermal stability was observed on the green mixtures using differential thermal and thermo gravimetric analyses. Electrical measurements recorded variations of the dielectric constant (epsilon(r)) and loss tangent (tan delta) as a function of the sintering temperature. The investigation highlighted critical design points, as well as the optimal combinations of the raw materials for production of the steatite ceramics for advanced electrical engineering applications.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials",
pages = "13275-13264",
number = "16",
volume = "43",
doi = "10.1016/j.ceramint.2017.07.024"
}
Terzić, A., Obradović, N., Stojanović, J., Pavlović, V., Andrić, L., Olcan, D.,& Djordjević, A.. (2017). Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials. in Ceramics International
Elsevier Sci Ltd, Oxford., 43(16), 13264-13275.
https://doi.org/10.1016/j.ceramint.2017.07.024
Terzić A, Obradović N, Stojanović J, Pavlović V, Andrić L, Olcan D, Djordjević A. Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials. in Ceramics International. 2017;43(16):13264-13275.
doi:10.1016/j.ceramint.2017.07.024 .
Terzić, Anja, Obradović, Nina, Stojanović, Jovica, Pavlović, Vladimir, Andrić, Ljubiša, Olcan, Dragan, Djordjević, Antonije, "Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials" in Ceramics International, 43, no. 16 (2017):13264-13275,
https://doi.org/10.1016/j.ceramint.2017.07.024 . .

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB