Matrix resistance stress: A key parameter for immobilized cell growth regulation
Authorized Users Only
2017
Authors
Pajić-Lijaković, IvanaMilivojević, Milan
Lević, Steva

Trifković, Kata

Dajić-Stevanović, Zora

Radošević, Radenko
Nedović, Viktor

Bugarski, Branko

Article (Published version)

Metadata
Show full item recordAbstract
Microenvironmentally restricted yeast cell growth within Ca-alginate beads with and without entrapped gas bubbles was considered based on experimental data. Cell growth dynamics was described by (1) the dimensionless cell number density as a function of the cell growth time and (2) the cell distribution per bead cross sections. One of the key control parameters for bioprocess optimization is the matrix resistance stress generated during immobilized cell expansion. The dynamics of the increase in matrix stress was described theoretically based on a multi-scale mathematical model. In order to estimate and reduce the accumulation of matrix stress we considered repeated stress relaxation cycles in separate rheological experiments without immobilized cells. The results revealed that the increase in resistance stress within the Ca-alginate matrix was significant (similar to 7 kPa) after 10 repeated cycles, even under a low compression strain of 2% per cycle. The stress could be reduced by us...ing the Ca-alginate matrix with entrapped gas bubbles. The final cell concentration within the beads with entrapped bubbles was 3.3 times higher in comparison with the beads without bubbles. The bubbles could locally amortize the compression effects within the surrounding cell clusters.
Keywords:
Ca-alginate bead with entrapped gas bubbles / Yeast / Matrix resistance stress generation / Matrix rheological properties / Modeling / Microenvironmentally restricted cell growthSource:
Process Biochemistry, 2017, 52, 30-43Publisher:
- Elsevier Sci Ltd, Oxford
Funding / projects:
- Advancing research in agricultural and food sciences at Faculty of Agriculture, University of Belgrade (EU-316004)
- Develooment and utilization of novel and traditional technologies in production of competitive food products with added valued for national and global market - CREATING WEALTH FROM THE WEALTH OF SERBIA (RS-46001)
- Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness (RS-46010)
DOI: 10.1016/j.procbio.2016.10.017
ISSN: 1359-5113
WoS: 000392774600004
Scopus: 2-s2.0-85002756249
Collections
Institution/Community
Poljoprivredni fakultetTY - JOUR AU - Pajić-Lijaković, Ivana AU - Milivojević, Milan AU - Lević, Steva AU - Trifković, Kata AU - Dajić-Stevanović, Zora AU - Radošević, Radenko AU - Nedović, Viktor AU - Bugarski, Branko PY - 2017 UR - http://aspace.agrif.bg.ac.rs/handle/123456789/4366 AB - Microenvironmentally restricted yeast cell growth within Ca-alginate beads with and without entrapped gas bubbles was considered based on experimental data. Cell growth dynamics was described by (1) the dimensionless cell number density as a function of the cell growth time and (2) the cell distribution per bead cross sections. One of the key control parameters for bioprocess optimization is the matrix resistance stress generated during immobilized cell expansion. The dynamics of the increase in matrix stress was described theoretically based on a multi-scale mathematical model. In order to estimate and reduce the accumulation of matrix stress we considered repeated stress relaxation cycles in separate rheological experiments without immobilized cells. The results revealed that the increase in resistance stress within the Ca-alginate matrix was significant (similar to 7 kPa) after 10 repeated cycles, even under a low compression strain of 2% per cycle. The stress could be reduced by using the Ca-alginate matrix with entrapped gas bubbles. The final cell concentration within the beads with entrapped bubbles was 3.3 times higher in comparison with the beads without bubbles. The bubbles could locally amortize the compression effects within the surrounding cell clusters. PB - Elsevier Sci Ltd, Oxford T2 - Process Biochemistry T1 - Matrix resistance stress: A key parameter for immobilized cell growth regulation EP - 43 SP - 30 VL - 52 DO - 10.1016/j.procbio.2016.10.017 ER -
@article{ author = "Pajić-Lijaković, Ivana and Milivojević, Milan and Lević, Steva and Trifković, Kata and Dajić-Stevanović, Zora and Radošević, Radenko and Nedović, Viktor and Bugarski, Branko", year = "2017", abstract = "Microenvironmentally restricted yeast cell growth within Ca-alginate beads with and without entrapped gas bubbles was considered based on experimental data. Cell growth dynamics was described by (1) the dimensionless cell number density as a function of the cell growth time and (2) the cell distribution per bead cross sections. One of the key control parameters for bioprocess optimization is the matrix resistance stress generated during immobilized cell expansion. The dynamics of the increase in matrix stress was described theoretically based on a multi-scale mathematical model. In order to estimate and reduce the accumulation of matrix stress we considered repeated stress relaxation cycles in separate rheological experiments without immobilized cells. The results revealed that the increase in resistance stress within the Ca-alginate matrix was significant (similar to 7 kPa) after 10 repeated cycles, even under a low compression strain of 2% per cycle. The stress could be reduced by using the Ca-alginate matrix with entrapped gas bubbles. The final cell concentration within the beads with entrapped bubbles was 3.3 times higher in comparison with the beads without bubbles. The bubbles could locally amortize the compression effects within the surrounding cell clusters.", publisher = "Elsevier Sci Ltd, Oxford", journal = "Process Biochemistry", title = "Matrix resistance stress: A key parameter for immobilized cell growth regulation", pages = "43-30", volume = "52", doi = "10.1016/j.procbio.2016.10.017" }
Pajić-Lijaković, I., Milivojević, M., Lević, S., Trifković, K., Dajić-Stevanović, Z., Radošević, R., Nedović, V.,& Bugarski, B.. (2017). Matrix resistance stress: A key parameter for immobilized cell growth regulation. in Process Biochemistry Elsevier Sci Ltd, Oxford., 52, 30-43. https://doi.org/10.1016/j.procbio.2016.10.017
Pajić-Lijaković I, Milivojević M, Lević S, Trifković K, Dajić-Stevanović Z, Radošević R, Nedović V, Bugarski B. Matrix resistance stress: A key parameter for immobilized cell growth regulation. in Process Biochemistry. 2017;52:30-43. doi:10.1016/j.procbio.2016.10.017 .
Pajić-Lijaković, Ivana, Milivojević, Milan, Lević, Steva, Trifković, Kata, Dajić-Stevanović, Zora, Radošević, Radenko, Nedović, Viktor, Bugarski, Branko, "Matrix resistance stress: A key parameter for immobilized cell growth regulation" in Process Biochemistry, 52 (2017):30-43, https://doi.org/10.1016/j.procbio.2016.10.017 . .