Приказ основних података о документу

dc.creatorPantelić, Nebojša
dc.creatorZmejkovski, Bojana B.
dc.creatorKolundzija, Branka
dc.creatorDordić-Crnogorac, Marija
dc.creatorVujić, Jelena M.
dc.creatorDojčinović, Biljana
dc.creatorTrifunović, Srecko R.
dc.creatorStanojković, Tatjana P.
dc.creatorSabo, Tibor J.
dc.creatorKaludjerović, Goran N.
dc.date.accessioned2020-12-17T21:53:40Z
dc.date.available2020-12-17T21:53:40Z
dc.date.issued2017
dc.identifier.issn0162-0134
dc.identifier.urihttp://aspace.agrif.bg.ac.rs/handle/123456789/4340
dc.description.abstractFour novel gold(III) complexes of general formulae [AuCl2{(S,S)-R(2)eddl}]PF6 (R(2)eddl = O,O'-dialkyl-(S,S)-ethylenediamine-N,N'-di-2-(4-methyl)pentanoate, R= n-Pr, n-Bu, n-Pe, i-Bu; 1-4, respectively), were synthesized and characterized by elemental analysis, UV/Vis, IR, and NMR spectroscopy, as well as high resolution mass spectrometry. Density functional theory calculations pointed out that (R,R)-N,N'-configuration diastereoisomers were energetically the most favorable. Duo to high cytotoxic activity complex 3 was chosen for stability study in DMSO, no decomposition occurs within 24 h, and for the reaction with ascorbic acid in which was reduced immediately. Additionally, 3 interacts with bovine serum albumin (BSA) as proven by UV/Vis spectroscopy. In vitro antitumor activity was determined against human cervix adenocarcinoma (HeLa), human myelogenous leukemia (K562), and human melanoma (Fem-x) cancer cell lines, as well as against non-cancerous human embryonic lung fibroblast cells MRC-5. The highest activity was observed against K562 cells (IC50: 5.04-6.51 mu M). Selectivity indices showed that these complexes are less toxic than cisplatin. 3 had a similar viability kinetics on HeLa cells as cisplatin. Drug accumulation studies in HeLa cells showed that the total gold uptake increased much faster than that of cisplatin pointing out that 3 more efficiently enters the cells than cisplatin. Furthermore, morphological and cell cycle analysis reveal that gold(III) complexes induced apoptosis in time- and dose-dependent manner.en
dc.publisherElsevier Science Inc, New York
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172035/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172016/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/175011/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Inorganic Biochemistry
dc.subjectGold(III) complexesen
dc.subjectR(2)edda-type ligandsen
dc.subjectMetal uptakeen
dc.subjectApoptosisen
dc.subjectBiological reactivityen
dc.titleIn vitro antitumor activity, metal uptake and reactivity with ascorbic acid and BSA of some gold(III) complexes with N,N '-ethylenediamine bidentate ester ligandsen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage66
dc.citation.other172: 55-66
dc.citation.rankM22
dc.citation.spage55
dc.citation.volume172
dc.identifier.doi10.1016/j.jinorgbio.2017.04.001
dc.identifier.scopus2-s2.0-85017584556
dc.identifier.pmid28433833
dc.identifier.wos000404000300007
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу