University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of yield by digital image analysis of vine

Procena prinosa grožđa analizom digitalne fotografije čokota vinove loze

Thumbnail
2014
3586.pdf (290.4Kb)
Authors
Bešlić, Zoran
Todić, Slavica
Matijašević, Saša
Conference object (Published version)
Metadata
Show full item record
Abstract
The grape yield per vine of cv. Cabernet Sauvignon (Vitis vinifera L.) was evaluated on the basis of digital image processing of vine part. Digital camera was mounted on tripod and used for taking photos of 1 x 1 m portions of canopy. The Adobe Photoshop software was used to analyse image for the colour counting of the blue pixels of grape in the quadrant region. The actual yield was obtained from the photographed vines by hand harvesting of sampled portions. Linear regression was used for calculation of the correlation between blue pixels and grape weight. The relatively strong relationship between blue pixels and grape weight (R2=0.91) was obtained. Based on these results, we can recommend this simple technique for yield forecasting.
U radu je prikazan metod procene prinosa grožđa po čokotu na osnovu primene analize nekih elemenata digitalne fotografije. Za analizu su korišćene kolor digitalne fotografije čokota vinove loze (Vitis vinifera L.) sorte Kaberne sovinjon na kojima je obuhvaćen deo sa zonom grozdova. Fotografisanje je izvršeno neposredno pred berbu grožđa, tako što je digitalna kamera montirana na tripod ispred rama koji je označavao zonu od 1 × 1 m2 i kojim je obuhvaćena cela zona grozdova jednog čokota. Za obradu snimljene fotografije korišćen je Adobe Photoshop program uz pomoć kojeg je izvršeno prebrojavanje svih tačaka i plavih tačaka (piksela) u označenom kvadratu. Odmah po izvršenom fotografisanju ispitivanog čokota, obrani su svi grozdovi i izmerena je njihova masa. Primenom linearne regresije utvrđena je relativno jaka korelativna zavisnost (R2=0,91) između vrednosti dobijene iz odnosa broja plavih tačaka grozdova / sve tačke fotografije i izmerene mase grožđa. Na osnovu dobijenih rezultata, mož...e se preporučiti ova tehnika za brzu, jednostavnu procenu prinosa grožđa u fazi kada bobice poprime punu sortnu boju pokožice.

Keywords:
grape weight / colour analysis / number of pixels / masa grožđa / analiza boje / broj piksela
Source:
Journal of Agricultural Sciences (Belgrade), 2014, 59, 2, 201-206
Publisher:
  • Univerzitet u Beogradu - Poljoprivredni fakultet, Beograd
Funding / projects:
  • The application of new genotypes and technological innovations for the purpose of improvement of fruit-growing and viticultural production (RS-31063)

DOI: 10.2298/jas1402201b

ISSN: 1450-8109

[ Google Scholar ]
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/3589
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet
TY  - CONF
AU  - Bešlić, Zoran
AU  - Todić, Slavica
AU  - Matijašević, Saša
PY  - 2014
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/3589
AB  - The grape yield per vine of cv. Cabernet Sauvignon (Vitis vinifera L.) was evaluated on the basis of digital image processing of vine part. Digital camera was mounted on tripod and used for taking photos of 1 x 1 m portions of canopy. The Adobe Photoshop software was used to analyse image for the colour counting of the blue pixels of grape in the quadrant region. The actual yield was obtained from the photographed vines by hand harvesting of sampled portions. Linear regression was used for calculation of the correlation between blue pixels and grape weight. The relatively strong relationship between blue pixels and grape weight (R2=0.91) was obtained. Based on these results, we can recommend this simple technique for yield forecasting.
AB  - U radu je prikazan metod procene prinosa grožđa po čokotu na osnovu primene analize nekih elemenata digitalne fotografije. Za analizu su korišćene kolor digitalne fotografije čokota vinove loze (Vitis vinifera L.) sorte Kaberne sovinjon na kojima je obuhvaćen deo sa zonom grozdova. Fotografisanje je izvršeno neposredno pred berbu grožđa, tako što je digitalna kamera montirana na tripod ispred rama koji je označavao zonu od 1 × 1 m2 i kojim je obuhvaćena cela zona grozdova jednog čokota. Za obradu snimljene fotografije korišćen je Adobe Photoshop program uz pomoć kojeg je izvršeno prebrojavanje svih tačaka i plavih tačaka (piksela) u označenom kvadratu. Odmah po izvršenom fotografisanju ispitivanog čokota, obrani su svi grozdovi i izmerena je njihova masa. Primenom linearne regresije utvrđena je relativno jaka korelativna zavisnost (R2=0,91) između vrednosti dobijene iz odnosa broja plavih tačaka grozdova / sve tačke fotografije i izmerene mase grožđa. Na osnovu dobijenih rezultata, može se preporučiti ova tehnika za brzu, jednostavnu procenu prinosa grožđa u fazi kada bobice poprime punu sortnu boju pokožice.
PB  - Univerzitet u Beogradu - Poljoprivredni fakultet, Beograd
C3  - Journal of Agricultural Sciences (Belgrade)
T1  - Prediction of yield by digital image analysis of vine
T1  - Procena prinosa grožđa analizom digitalne fotografije čokota vinove loze
EP  - 206
IS  - 2
SP  - 201
VL  - 59
DO  - 10.2298/jas1402201b
ER  - 
@conference{
author = "Bešlić, Zoran and Todić, Slavica and Matijašević, Saša",
year = "2014",
abstract = "The grape yield per vine of cv. Cabernet Sauvignon (Vitis vinifera L.) was evaluated on the basis of digital image processing of vine part. Digital camera was mounted on tripod and used for taking photos of 1 x 1 m portions of canopy. The Adobe Photoshop software was used to analyse image for the colour counting of the blue pixels of grape in the quadrant region. The actual yield was obtained from the photographed vines by hand harvesting of sampled portions. Linear regression was used for calculation of the correlation between blue pixels and grape weight. The relatively strong relationship between blue pixels and grape weight (R2=0.91) was obtained. Based on these results, we can recommend this simple technique for yield forecasting., U radu je prikazan metod procene prinosa grožđa po čokotu na osnovu primene analize nekih elemenata digitalne fotografije. Za analizu su korišćene kolor digitalne fotografije čokota vinove loze (Vitis vinifera L.) sorte Kaberne sovinjon na kojima je obuhvaćen deo sa zonom grozdova. Fotografisanje je izvršeno neposredno pred berbu grožđa, tako što je digitalna kamera montirana na tripod ispred rama koji je označavao zonu od 1 × 1 m2 i kojim je obuhvaćena cela zona grozdova jednog čokota. Za obradu snimljene fotografije korišćen je Adobe Photoshop program uz pomoć kojeg je izvršeno prebrojavanje svih tačaka i plavih tačaka (piksela) u označenom kvadratu. Odmah po izvršenom fotografisanju ispitivanog čokota, obrani su svi grozdovi i izmerena je njihova masa. Primenom linearne regresije utvrđena je relativno jaka korelativna zavisnost (R2=0,91) između vrednosti dobijene iz odnosa broja plavih tačaka grozdova / sve tačke fotografije i izmerene mase grožđa. Na osnovu dobijenih rezultata, može se preporučiti ova tehnika za brzu, jednostavnu procenu prinosa grožđa u fazi kada bobice poprime punu sortnu boju pokožice.",
publisher = "Univerzitet u Beogradu - Poljoprivredni fakultet, Beograd",
journal = "Journal of Agricultural Sciences (Belgrade)",
title = "Prediction of yield by digital image analysis of vine, Procena prinosa grožđa analizom digitalne fotografije čokota vinove loze",
pages = "206-201",
number = "2",
volume = "59",
doi = "10.2298/jas1402201b"
}
Bešlić, Z., Todić, S.,& Matijašević, S.. (2014). Prediction of yield by digital image analysis of vine. in Journal of Agricultural Sciences (Belgrade)
Univerzitet u Beogradu - Poljoprivredni fakultet, Beograd., 59(2), 201-206.
https://doi.org/10.2298/jas1402201b
Bešlić Z, Todić S, Matijašević S. Prediction of yield by digital image analysis of vine. in Journal of Agricultural Sciences (Belgrade). 2014;59(2):201-206.
doi:10.2298/jas1402201b .
Bešlić, Zoran, Todić, Slavica, Matijašević, Saša, "Prediction of yield by digital image analysis of vine" in Journal of Agricultural Sciences (Belgrade), 59, no. 2 (2014):201-206,
https://doi.org/10.2298/jas1402201b . .

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB