Приказ основних података о документу

dc.creatorStakić, Milan
dc.creatorUrošević, Tijana
dc.date.accessioned2020-12-17T20:10:19Z
dc.date.available2020-12-17T20:10:19Z
dc.date.issued2011
dc.identifier.issn0255-2701
dc.identifier.urihttp://aspace.agrif.bg.ac.rs/handle/123456789/2638
dc.description.abstractThe paper addresses numerical simulation for the case of convective drying of seeds (fine-grained materials) in a vibrated fluidized bed, analyzing agreement between the numerical results and the results of corresponding experimental investigation. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material during drying process it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate (evaporated moisture flux) of the specific product is calculated by applying the concept of a "drying coefficient". Mixing of the particles in the case of vibrated fluidized bed is taken into account by means of the diffusion term in the differential equations, using an effective particle diffusion coefficient. Model validation was done on the basis of the experimental data obtained with narrow fraction of poppy seeds characterized by mean equivalent particle diameter (d(S.d) = 0.75 mm), re-wetted with required (calculated) amount of water up to the initial moisture content (X-0 = 0.54) for all experiments. Comparison of the drying kinetics, both experimental and numerical, has shown that higher gas (drying agent) temperatures, as well as velocities (flow-rates), induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity. Bed temperature differences along the bed height, being significant inside the packed bed, are almost negligible in the vibrated fluidized bed, for the same drying conditions, due to mixing of particles. Residence time is shorter in the case of a vibrated fluidized bed drying compared to a packed bed drying.en
dc.publisherElsevier Science Sa, Lausanne
dc.relationMinistry of Science and Technical Development, Republic of Serbia
dc.rightsrestrictedAccess
dc.sourceChemical Engineering and Processing-Process Intensification
dc.subjectFine-grained materialsen
dc.subjectDrying kineticsen
dc.subjectHeat and mass transferen
dc.subjectDrying equationen
dc.subjectMathematical modelen
dc.titleExperimental study and simulation of vibrated fluidized bed dryingen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage437
dc.citation.issue4
dc.citation.other50(4): 428-437
dc.citation.rankM22
dc.citation.spage428
dc.citation.volume50
dc.identifier.doi10.1016/j.cep.2011.02.006
dc.identifier.scopus2-s2.0-79955119087
dc.identifier.wos000291298100010
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу