University of Belgrade - Faculty of Agriculture
AgroSpace - Faculty of Agriculture Repository
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   AgroSpace
  • Poljoprivredni fakultet
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato

Thumbnail
2005
1014.pdf (166.5Kb)
Authors
Obradović, Aleksa
Jones, Jeffrey B.
Momol, Timur M.
Olson, SM
Jackson, LE
Balogh, B
Guven, K
Iriarte, FB
Article (Published version)
Metadata
Show full item record
Abstract
Two strains of plant growth-promoting rhizobacteria, two systemic acquired resistance inducers (harpin and acibenzolar-S-methyl), host-specific unformulated bacteriophages, and two antagonistic bacteria were evaluated for control of tomato bacterial spot incited by Xanthomonas campestris pv. vesicatoria in greenhouse experiments. Untreated plants and plants treated with copper hydroxide were used as controls. The plant growth-promoting rhizobacteria or a tap water control were applied as a drench to the potting mix containing the seedlings, while the other treatments were applied to the foliage using a handheld sprayer. The plant growth-promoting rhizobacteria strains, when applied alone or in combination with other treatments, had no significant effect on bacterial spot intensity. Messenger and the antagonistic bacterial strains, when applied alone, had negligible effects on disease intensity. Unformulated phage or copper bactericide applications were inconsistent in performance under... greenhouse conditions against bacterial spot. Although acibenzolar-S-methyl completely prevented occurrence of typical symptoms of the disease, necrotic spots typical of a hypersensitive reaction (HR) were observed on plants treated with acibenzolar-S-methyl alone. Electrolyte leakage and population dynamics experiments confirmed that acibenzolar-S-methyl-treated plants responded to inoculation by eliciting an HR. Application of bacteriophages in combination with acibenzolar-S-methyl suppressed a visible HR and provided excellent disease control. Although we were unable to quantify populations of the bacterium on the leaf surface, indirectly we determined that bacteriophages specific to the target bacterium reduced populations of a tomato race 3 strain of the pathogen on the leaf surface of acibenzolar-S-methyl-treated plants to levels that did not induce a visible HR. Integrated use of acibenzolar-S-m ethyl and phages may complement each other as an alternative management strategy against bacterial spot on tomato.

Keywords:
integrated management / SAR inducers
Source:
Plant Disease, 2005, 89, 7, 712-716
Publisher:
  • Amer Phytopathological Soc, St Paul

DOI: 10.1094/PD-89-0712

ISSN: 0191-2917

PubMed: 30791240

WoS: 000230053900004

Scopus: 2-s2.0-20644460780
[ Google Scholar ]
96
85
URI
http://aspace.agrif.bg.ac.rs/handle/123456789/1017
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Poljoprivredni fakultet
TY  - JOUR
AU  - Obradović, Aleksa
AU  - Jones, Jeffrey B.
AU  - Momol, Timur M.
AU  - Olson, SM
AU  - Jackson, LE
AU  - Balogh, B
AU  - Guven, K
AU  - Iriarte, FB
PY  - 2005
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/1017
AB  - Two strains of plant growth-promoting rhizobacteria, two systemic acquired resistance inducers (harpin and acibenzolar-S-methyl), host-specific unformulated bacteriophages, and two antagonistic bacteria were evaluated for control of tomato bacterial spot incited by Xanthomonas campestris pv. vesicatoria in greenhouse experiments. Untreated plants and plants treated with copper hydroxide were used as controls. The plant growth-promoting rhizobacteria or a tap water control were applied as a drench to the potting mix containing the seedlings, while the other treatments were applied to the foliage using a handheld sprayer. The plant growth-promoting rhizobacteria strains, when applied alone or in combination with other treatments, had no significant effect on bacterial spot intensity. Messenger and the antagonistic bacterial strains, when applied alone, had negligible effects on disease intensity. Unformulated phage or copper bactericide applications were inconsistent in performance under greenhouse conditions against bacterial spot. Although acibenzolar-S-methyl completely prevented occurrence of typical symptoms of the disease, necrotic spots typical of a hypersensitive reaction (HR) were observed on plants treated with acibenzolar-S-methyl alone. Electrolyte leakage and population dynamics experiments confirmed that acibenzolar-S-methyl-treated plants responded to inoculation by eliciting an HR. Application of bacteriophages in combination with acibenzolar-S-methyl suppressed a visible HR and provided excellent disease control. Although we were unable to quantify populations of the bacterium on the leaf surface, indirectly we determined that bacteriophages specific to the target bacterium reduced populations of a tomato race 3 strain of the pathogen on the leaf surface of acibenzolar-S-methyl-treated plants to levels that did not induce a visible HR. Integrated use of acibenzolar-S-m ethyl and phages may complement each other as an alternative management strategy against bacterial spot on tomato.
PB  - Amer Phytopathological Soc, St Paul
T2  - Plant Disease
T1  - Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato
EP  - 716
IS  - 7
SP  - 712
VL  - 89
DO  - 10.1094/PD-89-0712
ER  - 
@article{
author = "Obradović, Aleksa and Jones, Jeffrey B. and Momol, Timur M. and Olson, SM and Jackson, LE and Balogh, B and Guven, K and Iriarte, FB",
year = "2005",
abstract = "Two strains of plant growth-promoting rhizobacteria, two systemic acquired resistance inducers (harpin and acibenzolar-S-methyl), host-specific unformulated bacteriophages, and two antagonistic bacteria were evaluated for control of tomato bacterial spot incited by Xanthomonas campestris pv. vesicatoria in greenhouse experiments. Untreated plants and plants treated with copper hydroxide were used as controls. The plant growth-promoting rhizobacteria or a tap water control were applied as a drench to the potting mix containing the seedlings, while the other treatments were applied to the foliage using a handheld sprayer. The plant growth-promoting rhizobacteria strains, when applied alone or in combination with other treatments, had no significant effect on bacterial spot intensity. Messenger and the antagonistic bacterial strains, when applied alone, had negligible effects on disease intensity. Unformulated phage or copper bactericide applications were inconsistent in performance under greenhouse conditions against bacterial spot. Although acibenzolar-S-methyl completely prevented occurrence of typical symptoms of the disease, necrotic spots typical of a hypersensitive reaction (HR) were observed on plants treated with acibenzolar-S-methyl alone. Electrolyte leakage and population dynamics experiments confirmed that acibenzolar-S-methyl-treated plants responded to inoculation by eliciting an HR. Application of bacteriophages in combination with acibenzolar-S-methyl suppressed a visible HR and provided excellent disease control. Although we were unable to quantify populations of the bacterium on the leaf surface, indirectly we determined that bacteriophages specific to the target bacterium reduced populations of a tomato race 3 strain of the pathogen on the leaf surface of acibenzolar-S-methyl-treated plants to levels that did not induce a visible HR. Integrated use of acibenzolar-S-m ethyl and phages may complement each other as an alternative management strategy against bacterial spot on tomato.",
publisher = "Amer Phytopathological Soc, St Paul",
journal = "Plant Disease",
title = "Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato",
pages = "716-712",
number = "7",
volume = "89",
doi = "10.1094/PD-89-0712"
}
Obradović, A., Jones, J. B., Momol, T. M., Olson, S., Jackson, L., Balogh, B., Guven, K.,& Iriarte, F.. (2005). Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. in Plant Disease
Amer Phytopathological Soc, St Paul., 89(7), 712-716.
https://doi.org/10.1094/PD-89-0712
Obradović A, Jones JB, Momol TM, Olson S, Jackson L, Balogh B, Guven K, Iriarte F. Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. in Plant Disease. 2005;89(7):712-716.
doi:10.1094/PD-89-0712 .
Obradović, Aleksa, Jones, Jeffrey B., Momol, Timur M., Olson, SM, Jackson, LE, Balogh, B, Guven, K, Iriarte, FB, "Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato" in Plant Disease, 89, no. 7 (2005):712-716,
https://doi.org/10.1094/PD-89-0712 . .

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the AgroSpace Repository | Send Feedback

re3dataOpenAIRERCUB