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Using modern analytical techniques, a comprehensive study of the chemical composition

of fruits from apple cultivars grown in Western Norway during 2019 and 2020 was

done. Metals, sugars, organic acids, antioxidant tests, and polyphenol content have

been observed. In all investigated samples, the most dominant sugars were glucose,

fructose, and sucrose. Among 11 tested organic acids, the dominant was malic

acid, followed by citric and maleic acid. The most common metal was potassium,

followed by magnesium and zinc. The quantification of polyphenols showed that among

the 11 quantified polyphenols, chlorogenic acid, quercetin 3-O-rhamnoside, quercetin

3-O-glucoside, quercetin, and phlorizin were the most abundant. A detailed study

of the polyphenolic profile of nine investigated apple samples provided 30 identified

polyphenolic compounds from the class of hydroxybenzoic and hydroxycinnamic acids,

flavonoids, and dihydrochalcones. In addition to the identified 3-O-caffeoylquinic acid,

its two isomers of 5-O-caffeoylquinic acid and three esters were also found. Present

polyphenols of the tested apples provided significant data on the quality of Norwegian

apples, and they contribute to the distinguishing of these apple samples.

Keywords: antioxidant capacity, genetic resources, sugars, organic acids, polyphenols, minerals

INTRODUCTION

The ancestor of today’s apple (Malus × domestica Borkh.) comes from the Tian Shan Mountains
(Central Asia) and is thought to have originated about 4,000–10,000 years ago. Throughout history,
apples were hybridized with otherMauls species and traveled along the Silk Road westward. Later,
Greeks and Romans distributed apples throughout Europe (1). It is one of the most important
temperate fruit species, and with 86 million tons it ranks the second place in the world’s fruit
production, while China (47% of world production) is the leading country (2). In Norway, apple
production (on more than 1,500 ha and more than 12,000 tons) is organized mostly around fjords,
which are the most northerly fruit tree-producing area in the world (3).
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Apple and apple products (jam, juice, concentrate,
marmalade, compotes, tea, wine, dried, cider) are rich in
various products of primary and secondary metabolism which
are also associated with general human health. Their quantities
depend on genotype, rootstock, agro-technical measurements
(fertilizing, irrigation, and pruning), growing season, picking
time, storage, and processing together with biotic and biotic
stresses (4). The quantity and ratio of sugars in the fruit depend
on cultivar/genotype, ripening time, soil and microclimatic
conditions, orchard maintenance, and all kinds of biotic and
abiotic stresses (5). Apples are recognized as an excellent source
of carbohydrates, where glucose, fructose, and sucrose are the
most abundant (6, 7). Malic acid is the dominant organic acid
in apple fruits, sometimes rich in up to 90% of the total organic
acids, followed by citric, shikimic, fumaric, and quinic acid
(8, 9). If acids are too low, the sweet taste becomes predominant
and bland. The balance between sugars and acids has an
important role in consumer acceptance where apple cultivars
with sugar/acid ratios lower than 20 are sharp and appropriate
for processing and cider production, while others can be used for
table consumption (10).

Roussos and Gasparatos (11) and Fotirić Akšić et al. (12)
found that apple fruits are a good source of minerals, especially
K, P, Ca, Mg, N, Zn, Fe, and others. Minerals are involved in
many physiological processes within the apple fruit. Calcium,
potassium, and magnesium and their ratios in mature apple
fruits influence their quality, cell wall structure, and storage life,
while its deficiency can provoke physiological disorders (13, 14).
Nitrogen is one of the most important minerals for the fruit tree
physiology, and if too little it will inhibit growth and fruit set but
if too much it will induce problems with fruit quality, excessive
vegetative growth, and diseases (15). In contrast, minerals are
involved in the metabolism of carbohydrates, lipids, proteins,
vitamins, and enzymes in humans and their consumption
can lower lung dysfunctions and various cancers, particularly
prostate, liver, colon, and lung (16).

One of the largest groups of secondary plant metabolites in
apple fruit are polyphenols that account for the fruit color, flavor,
and taste of the fruit (17). The apple peel has several times higher
phenolic content than apple pulp that can be partly transferred
to the corresponding juice (7, 18, 19). The concentration of
polyphenols is influenced by the genotype, all kinds of biotic
and abiotic stresses, environmental factors (season, different
latitudes, soil, light exposure), as well as agricultural techniques
(conventional/integrated/organic cultivation, fertilization,
irrigation) (20). The most common phenolic compounds that
could be quantified in apple fruits are flavan-3-ols (catechin,
epicatechin), phenolic acids (chlorogenic acid, caffeic acid,
ferulic acid, protocatecuic acid), flavonoids (rutin, baicalein,
and naringenin), flavonols (quercetin glycosides, kaempherol),
dihydrochalcones (phloridzin, phloretin), and anthocyanins
(cyanidin-3-O-galactoside) (7, 21). Additionally, phenolic
compounds, especially proanthocyanidins and phlorizin,
contribute to the astringency and bitterness of apples, while
chlorogenic acid is a non-bitter phenolic acid (22). The presence
of specific phenolic compounds can cause resistance of apple
cultivar to the most important diseases. In such a way, phloridzin

(phytoalexin) provides resistance to plant pathogens such
as apple scab and bacterial cancer (23). Apples have high
antioxidant activity and prevent chronic diseases such as
cancers, asthma, aging, and cognitive processes, Alzheimer’s
disease, and improve bone and gastrointestinal health and
pulmonary function (17). Consumption of apples lowers the
level of cholesterol and triglycerides in the blood and reduces
cardiovascular diseases, obesity, and diabetes (24).

Due to the accumulation of the somatic mutations,
spontaneous hybridization, selection, and human activities
during the long history of its cultivation, the genus Malus, at
present, is characterized by a large diversity (25). Even with
more than 10,000 cultivars recognized, only 10 of those (Idared,
McIntosh, Cox’s Orange Pippin, Cripps Pink, Honey Crisp,
Braeburn, Fuji, Gala, Granny Smith, Red Delicious, and Golden
Delicious) are grown worldwide (26). However, great quantities
of apples are produced in small-scale orchards, established
with local, stress-resistant cultivars, having good morphological
and pomological attributes that can be even superior to “top
10” apple cultivars and form a huge reservoir of variability
(27). Recently, the nostalgia for old varieties has increased
since a certain degree of a monotony of taste is offered in the
mainstream supermarkets. Besides, archive apple cultivars (apple
germplasm) are an important pool of genetic diversity, which
are a carrier of genes that influence the ability of the genotype to
adapt to the changing environments, pests, and improve quality
via hybridization in some breeding programs.

For these reasons, the aim of this study was to analyze
the chemical content of 103 apple archive cultivars that are
grown in Norway and carefully select nine samples for further
analysis of phenolic profile. This kind of study will provide
important information about the apple samples due to the well-
known amplification of chemical compounds as markers of
growing location.

MATERIALS AND METHODS

Chemicals and Standards
Sugar standards (trehalose, arabinose, glucose, fructose, sucrose,
turanose, galactose, ribose, isomaltose, isomaltotriose, maltose,
maltotriose, xylose, melibiose, panose, rhamnose, raffinose,
stachyose) were purchased from Tokyo Chemical Industry (TCI,
Zwijndrecht, Belgium); standards of sugar alcohols (sorbitol,
glycerol, galactitol, mannitol), organic acids standards (citric,
maleic, malic, pyruvic, shikimic, lactic, propionic, butyric,
quinic, oxalic, fumaric acids), sodium acetate trihydrate, sodium
hydroxide, methanol, phenolic standards (3-O-caffeoylquinic
acid, caffeic acid, chlorogenic acid, ferulic acid, gallic acid,
p-coumaric acid, p-hydroxybenzoic acid, p-hydroxyphenyl acetic
acid, protocatechuic acid, sinapic acid, syringic acid, vanillic acid,
acacetin, aesculetin, catechin, eriodictyol, isorhamnetin 3-O-
glucoside, isorhamnetin 3-O-rutinoside, kaempferol, kaempferol
3-O-glucoside, kaempferol 7-O-glucoside, naringenin, naringin,
phloretin, phlorizin, quercetin, quercetin 3-O-glucoside,
quercetin 3-O-rhamnoside, rutin), Trolox standard, and gallic
acid were from Sigma-Aldrich (Steinheim, Germany). Formic
acid, acetonitrile, nitric acid, and hydrogen peroxide were from
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Merck (Darmstadt, Germany); multi-element plasma standard
solution 4 was from Alfa Aesar GmbH & Co KG (Kandel,
Germany) and ILM 05.2 ICS Stock 1 was from VHG Labs, Inc,
part of LGC Standards (Manchester, USA). Strata C18-E type
(500 mg/3ml) cartridges for solid-phase extraction (SPE) were
purchased from Phenomenex (Torrance, CA) and syringe filters
(15mm; 0.45µm and 0.22µm) were from Supelco (Bellefonte,
PA). All aqueous solutions were prepared using ultrapure water
(0.055 mS/cm) obtained by using the Thermo Fisher TKA
MicroPure water purification system.

Plant Material
Apple fruits (Supplementary Table S1) were collected from two
areas in Western Norway, the experimental farm of NIBIO
Ullensvang (latitude 60◦19

′
8.03

′′
N, longitude 6◦39

′
14.31

′′
E) and

Njøs Fruit and Berry Center, Leikanger (at latitude 61◦10
′
43.2

′′
N,

longitude 6◦51
′
34.3

′′
E), along the Sognefjord. All apple trees were

trained as spindle trees and pruned to amaximumheight of about
2.5–3m. In both orchards, the selected trees were homogeneous
in terms of amounts of flowers vigor and health status. Orchard
floor management consisted of grass in the interrows and a 1-m
wide herbicide strip in the intrarow space, which is the industry
standard for managements. The soil was a sandy-loam with
∼5% organic matter. The trees were irrigated by drip irrigation
when water deficits occurred. Based on soil and leaf analysis, all
trees received the same amount of fertilizers. Fertilization and
crop protection were carried out according to standard local
fruit-growing practices. All trees received the same amount of
fertilizers based on soil analysis. Hand thinning was carried out at
both locations at the end of June to achieve optimum crop loads
of good fruit quality (15 cm apart between fruitlets).

Fruits from 74 apple cultivars, at optimal harvest times
based on parameters such as ground color, firmness, taste,
and seeds color, were picked from the Norwegian Institute of
Bioeconomy Research (NIBIO) Ullensvang area and fruits from
29 apple cultivars from Njøs Fruit and Berry Center (Figure 1,
Supplementary Table S1). Among those 103 apple samples, four
apple varieties “Franskar,” “Fuhr,” “Furuholm,” and “Løeple” were
grown in both areas. The apple samples were collected during
the 2-year seasons, 2019 and 2020. The fruits were cut into small
pieces and dried in an oven at 40◦C for about 10 days. All samples
were grounded to powder using an analytical mill (A 10 basic
Analytical mill, IKA-Werke GmbH & Co). The samples were
measured in duplicate and used for further analysis. All results
are expressed on the dry weight (dw) of the sample.

Weather Conditions
West Norway, especially the fjord areas, has a cool, maritime,
Nordic climate, which is under the influence of the Gulf Stream.
It is characterized by cool summers and mild winters. Weather
fronts are usually coming from southwest from theNorth Sea and
the Atlantic Ocean. It rarely has problems with frost damage of
the fruit trees, either during the winter or during blossom time.
The snow-covered mountains give protection to high amounts of
rain from the west. In Ullensvang, the average temperature for
the year is 7.6◦C and the annual rainfall 1,705mm. May, June,
and July are the driest months (78, 75, and 77mm, respectively)

and December is the coldest and has the highest rainfall (1.7◦C
and 243mm rain in average). The average temperature during
the season, May–September, is 13.4◦C. The average annual air
temperature at Njøs is 7.3◦C (during spring 4–11◦C), annual
rainfall is 1,063mm (with May being driest with 15 rainy days)
and an average annual humidity percentage of 78.0%. Average
monthly hours of sunshine are the highest in May (∼175 h), and
the mean monthly wind speed over the year is 3 m/s.

Preparation of Extracts
For sugar and organic acid determination, 1.0 g of homogenized
sample was 100-fold diluted with ultrapure water and sonicated
for 30min. The solutions were centrifuged at 9,000 rpm/min for
20min and supernatants were filtered through a 0.22µm syringe
filter. The filtrate was kept at−18◦C until analysis.

In the case of phenolic analysis and antioxidant activity, apple
extract samples were prepared following the procedure described
by Pavlović et al. (28) with slight modifications. To the measured
amount of 0.4–0.5 g of each dry apple sample, an amount of
10ml of acidified methanol/water solution (70/30 with 0.1%
hydrochloric acid to pH 2) was added. After using the ultrasonic
bath (twice for 30min), the samples were centrifuged (6,000
rpm/min for 10min) and passed through 0.45µm syringe filters.
For further chromatographic analysis, SPE was used to isolate
and concentrate polyphenolic compounds in sample extracts.

Determination of Metals by ICP-MS
Microwave Digestion
The digestion of finely chopped and homogenized samples
was performed on the Advanced Microwave Digestion System
(ETHOS 1, Milestone, Italy) using an HPR-1000/10S high-
pressure segmented rotor. About 0.25 g of sample were mixed
with 10ml HNO3 (65 wt.%) and 1ml H2O2 (30 wt.%).
The temperature was gradually raised with microwave power
(0–1,000W) to 200◦C in the first 20min, remained at 200◦C in
the next 20min, and then decreased rapidly to room temperature.
After cooling and without filtration, the solution was diluted to a
fixed volume (25ml) with ultrapure water.

ICP-OES Measurement
The content of major and trace elements in solution samples
was determined by inductively coupled plasma optic emission
spectrometry (ICP-OES). ICP-OES measurement was performed
using Thermo Scientific iCAP 6500 Duo ICP (Thermo Fisher
Scientific, Cambridge, UK) spectrometer equipped with
RACID86 Charge Injector Device (CID) detector. The optical
system was purged with argon and the Echelle polychromator
was thermostated at 38◦C. The instrumental operating
conditions for ICP-OES are shown in Supplementary Table S2.

The calibration blank was repaired by acidifying reagent water
to the same concentrations of the acids found in the standards
and samples. The method blank must contain all of the reagents
in the same volumes as used in the processing of the samples.
The method blank must be carried out through the complete
procedure and contain the same acid concentration in the final
solution as the sample solution used for analysis. Concentrations
of elements of the sample are expressed as mg/kg.
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FIGURE 1 | Sampling sites of apple fruits in Norway. NIBIO, Norwegian Institute of Bioeconomy Research, Ullensvang area, and Njøs.

Determination of Sugars and Sugar
Alcohols by IC
A high-performance anion-exchange liquid chromatography
system with pulse amperometric detection was used to analyze
sugar and sugar alcohols. Chromatographic measurement was
performed using DIONEX ICS 3000 DP liquid chromatography
system (Dionex, Sunnyvale, CA, USA) equipped with a
quaternary gradient pump and electrochemical detector, which
consisted of Au as the working electrode and Ag/AgCl as
reference electrode. All separations were performed on Carbo
Pac R©PA100 (4 × 250mm; Dionex, Sunnyvale, CA, USA)
thermostated to 30◦C. The flow was constant (0.7 ml/min),

whereas the composition of the mobile phase is given in
Supplementary Table S3.

Determination of Organic Acids by IC
The organic acid analysis was performed on Dionex ICS
3000 associated with a single-channel pump, conductivity
detector (ASRS ULTRA II [4mm], recycle mode), eluent
generator (KOH), and Chromeleon software (Chromatography
Workstation and Chromeleon 6.7 Chromatography
Management Software). All separations were made on the
analytical column IonPac AS15, 4 × 250mm and IonPac AG15
guard column, 4 × 50mm. The mobile phase flow rate was 0.5
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ml/min, and mobile phase composition was changed (gradient
elution) during the analysis in the following order: 0–4min
= 10mM KOH; 4–20min = from 10mM to 60mM KOH;
20–30min= from 60mM to 10mM; 30–35min= 10 mM.

Polyphenolic Analysis
Amixture of each phenolic standard was prepared inmethanol as
a 1,000 mg/L stock solution. Dilution of the stock solution with
methanol yielded working solutions at concentrations of 0.025,
0.050, 0.100, 0.250, 0.500, 0.750, and 1.000 mg/L. They were kept
in the dark at 4◦C. Calibration curves were obtained by plotting
the peak areas of the standards against their concentration.

Polyphenolic were quantified using an ultra-high-
performance liquid chromatography system (UHPLC) coupled
with diode array detector (DAD) and mass spectrometer.
The polyphenolic compounds were separated using a Dionex
Ultimate 3000 UHPLC system. Separation was achieved on a
Syncronis C18 analytical column (100 × 2.1mm i.d., 1.7µm,
Thermo Fisher Scientific, Bremen, Germany). The mobile phase
consisted of (A) water + 0.1% formic acid and (B) acetonitrile.
The mass spectrometer TSQ Quantum Access Max triple
quadruple (QqQ) was operated in negative mode from m/z
100 to 1,000. To quantify the polyphenols, a molecular ion
and two of the most intense fragments from the MS2 spectrum
were recorded in particular. Detailed chromatographic and MS
parameters were previously published in Gašić et al. (29). The
Xcalibur software (version 2.2) was used for instrument control.
Polyphenols were quantitated according to the corresponding
spectrometric characteristics of reference standards. Total
contents of all compounds were obtained by plotting the peak
areas and expressed as mg/L.

In addition, phenolic profiles of nine chosen apple samples
were analyzed on a UHPLC system connected to a linear
trap quadrupole (LTQ) OrbiTrap mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany). The following conditions
of both chromatography and spectrometry parts of UHPLC-
LTQ OrbiTrap MS were described in our previously study (29).
The MS2, MS3, and MS4 fragmentations were confirmed using
available standards or published fragmentation data.

Data Evaluation for Correlation Study
Principal component analysis (PCA) facilitated understanding of
patterns in analyzed data by offering information on determining
variables, which behave similarly to each other. The results of
PCA of the 103 samples (nos. 1–74 from the NIBIO Ullensvang
area, and nos. 75–103 from Njøs) according to investigated
variables such as the content of nutrients, sugars, organic
acids, and polyphenolics, were represented in biplots. Data
were examined using StatSoft Statistica 12 (StatSoft Inc., Tulsa,
OK, USA).

RESULTS AND DISCUSSION

Chemical Analysis
The chemical analysis of fruits from the 103 investigated apple
cultivars included results for sugar compounds, organic acids,
minerals, phenolic compounds, and antioxidant tests [total

phenolic content (TPC) and relative scavenging activity (RSA)].
All results were presented by descriptive analysis, withminimum,
maximum, mean value, and standard deviation, which were done
on average values over 2 years, for apple samples from the NIBIO
Ullensvang area, and Njøs (Tables 1–4).

Determination of Sugars
Sugars are primary products of photosynthesis, providing energy
for all kinds of metabolic processes. Besides, sugars are important
for fruit sweetness at harvest and consumers acceptance. In
all investigated apple samples, 18 sugars and 4 sugar alcohols
(Table 1) were determined. The most dominant sugars in apple
samples were fructose, glucose, and sucrose. In the woody
Rosaceae family, sucrose, glucose, and fructose and the sugar
alcohol sorbitol are the most common (30). In addition, during
the fruit ripening, sucrose is hydrolyzed into glucose and
fructose. Following simple sugars, sorbitol and glycerol were the
most abundant in studied apples. Sorbitol, as a very important
translocated sugar, ranged from 7.56 to 82.53 g/kg dw. Our results
correspond to those obtained by other studies (9, 31). Studied
apples stored the lowest quantity of arabinose, panose, and
mannitol (Table 1), whose minimum values were below 0.26 g/kg
dw. The sugar accumulation was cultivar dependent, but external
factors, such as weather conditions, type of soil, fertilization, and
other treatments, influenced this process as well (32).

All sugar compounds showed higher mean values in
apple samples from the Ullensvang area. However, two sugar
compounds (glycerol and isomaltose) were found in higher
content in apples from Njøs. The sum of the sugars was in the
range from 522.08 to 848.06 g/kg dw, with higher mean values
in the apple samples from the NIBIO Ullensvang area (Table 1).
Furthermore, the sum of the sugar alcohols was two-fold higher
in these apples (60.33 g/kg dw) in contrast to apples from Njøs
(30.01 g/kg dw; Table 1).

Determination of Organic Acids
In fruits, organic acids are usually inversely related to sugar levels
and strongly affect organoleptic quality like taste, sight, and smell.
During maturation, organic acids accumulated in young fruits
strongly decrease (33). The metabolism and accumulation of
organic acids in fruits are under both genetic and environmental
control (34). Organic acids play important functions in carbon
to nitrogen and hormone metabolism, and in the control of fruit
growth via cell expansion through water uptake (35).

In the studied apple fruits, malic acid was the most abundant
organic acid, followed by maleic and citric acid. The results
obtained in this study are in accordance with results from other
authors (8, 9, 36). Samples from the NIBIO Ullensvang area
had higher contents of organic acids compared to samples from
Njøs. In the NIBIO Ullensvang samples, malic acid was the
most dominant followed by maleic and citric acids with 2-year
mean values of 45.68, 16.55, and 14.77 g/kg dw, respectively.
The same trend (malic, maleic, citric acid) was observed in
samples from Njøs with 2-year mean values of 17.10, 4.77,
and 3.34 g/kg dw, respectively. The following organic acids in
prevalence in the NIBIO Ullensvang samples were quinic and
oxalic (2-year mean values 3.70 and 3.59 g/kg dw, respectively),
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TABLE 1 | Descriptive analysis of sugar content (g/kg dw) in Norwegian apple samples from the NIBIO Ullensvang area (no. 1–74) and from Njøs (no. 75–103) during

2-year harvesting.

Norwegian area NIBIO Ullensvang area Njøs

Parameter Min Max Mean SD Min Max Mean SD

Sorbitol 9.53 82.53 42.81 17.22 7.56 61.17 20.21 13.39

Trehalose 0.29 41.40 9.55 9.39 0.31 22.96 3.15 5.02

Arabinose 0.26 18.05 4.50 4.99 0.14 11.34 1.67 2.52

Glucose 153.10 256.93 201.16 23.45 137.76 225.60 180.18 17.88

Fructose 208.77 313.47 260.42 27.23 161.82 240.86 200.31 18.71

Sucrose 83.49 297.35 193.14 36.25 126.90 210.19 148.75 17.32

Turanose 1.68 38.64 20.06 6.82 1.70 36.10 15.03 9.42

Glycerol 1.66 32.75 8.57 6.68 0.97 44.22 4.36 8.44

Galactitol 1.21 12.22 4.89 2.83 1.22 7.99 2.81 1.46

Galactose 0.34 25.63 7.25 4.46 0.87 11.98 4.15 3.13

Ribose 1.99 34.06 11.39 7.31 1.69 21.65 6.60 4.85

Isomaltose 1.32 12.33 5.68 2.82 0.78 13.01 2.87 3.03

Isomaltotriose 0.51 5.71 2.08 1.27 0.52 5.15 1.12 0.88

Maltose 0.48 10.99 3.97 2.79 0.37 7.05 1.94 1.48

Maltotriose 0.84 5.46 1.97 1.13 0.59 3.56 1.23 0.69

Mannitol 0.12 15.07 4.05 3.86 0.11 8.78 2.64 1.85

Xylose 0.30 17.20 6.10 4.09 0.38 11.61 4.97 2.64

Melibiose 0.30 18.07 6.53 4.08 0.52 11.84 2.57 2.89

Panose 0.22 7.83 2.45 1.81 0.24 5.14 0.82 1.08

Rhamnose 0.26 12.45 2.87 2.51 0.73 5.89 2.44 1.39

Raffinose 0.61 16.25 3.84 2.74 1.28 10.56 3.52 3.19

Stachyose 0.47 4.86 1.53 0.95 0.51 3.45 1.08 0.65

Sum of sugars 593.01 848.06 744.54 54.86 522.08 792.56 582.42 56.07

Sum of sugar alcohols 20.55 105.18 60.33 21.16 14.03 110.63 30.01 20.57

TABLE 2 | Descriptive analysis of organic acids content (g/kg dw) in Norwegian apple samples from the NIBIO Ullensvang area (no. 1–74) and from Njøs (no. 75–103)

during 2-year harvesting.

Norwegian area NIBIO Ullensvang area Njøs

Parameter Min Max Mean SD Min Max Mean SD

Citric 6.89 30.17 14.77 5.96 1.70 16.19 3.34 2.83

Maleic 4.74 56.23 16.55 10.77 2.22 10.80 4.77 2.09

Malic 15.72 102.30 45.68 19.14 6.89 46.08 17.10 8.58

Pyruvic 0.11 2.54 1.22 0.49 0.71 2.02 1.19 0.33

Shikimic 0.02 1.57 0.36 0.26 0.02 1.59 0.17 0.36

Lactic 0.42 2.68 1.01 0.43 0.74 2.34 1.48 0.35

Propionic 0.18 4.50 1.44 0.92 0.55 3.09 1.29 0.57

Butiric 0.52 2.85 1.15 0.57 0.06 2.03 0.43 0.60

Quinic 0.84 24.26 3.70 3.71 0.32 5.89 1.42 1.24

Oxalic 0.91 10.18 3.59 2.24 0.32 8.21 2.57 1.86

Fumaric 0.64 2.49 1.37 0.46 0.95 3.96 2.03 0.80

while in the Njøs samples those were oxalic and fumaric acids
(2-year mean values 2.57 and 2.03 g/kg dw, respectively). In
literature (37), the existence of quinic acid in apple juice with
a somewhat higher concentration was reported. Based on the
obtained results, it can be concluded that Norwegian apples are,

in general, rather acidic, which goes in line with other authors
(38). According to Ma et al. (39), fruit acidity possibly underwent
artificial selection during apple domestication, which means that
autochthonous apple cultivars could be valuable resources for
apple quality improvement.
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TABLE 3 | Descriptive analysis of content of nutrients (mg/kg dw) in Norwegian apple samples from the NIBIO Ullensvang area (no. 1–74) and from Njøs (no. 75–103)

during 2-year harvesting.

Norwegian area NIBIO Ullensvang area Njøs

Parameter Min Max Mean SD Min Max Mean SD

Al 5.65 210.75 51.97 42.41 3.23 44.03 13.16 11.45

B 6.95 54.89 19.01 12.47 5.17 65.10 18.18 16.28

Ca 13.97 901.19 325.65 125.65 25.45 313.13 112.91 87.96

Cu 1.12 27.67 2.94 3.01 0.76 2.99 1.72 0.47

Fe 1.81 644.59 40.76 82.80 2.20 27.62 8.20 5.61

K 1,377.23 7,570.56 5,239.41 1,208.13 1,379.70 3,946.52 2,451.02 776.82

Mg 84.45 388.87 266.64 66.37 38.52 212.49 103.85 50.50

Mn 0.37 6.97 2.28 0.94 0.30 2.24 0.97 0.55

Na 14.10 582.85 129.98 92.03 0.27 157.64 54.65 38.46

Zn 3.30 12,626.49 4,499.88 1,956.57 5,288.89 23,888.72 9,805.33 4,458.70

P 112.57 673.91 375.32 88.99 149.98 449.02 270.87 74.60

S 1.81 489.46 156.82 70.01 2.87 81.07 8.02 14.48

N (%) 4.03 6.22 4.83 0.45 3.74 6.23 4.82 0.61

Determination of Metals
Mineral content in apple fruits depends on stresses, biotic, and
abiotic factors, as well as cultural practice (irrigation, rootstocks,
and fertigation and foliar application of nutritional sprays). Apple
minerals (especially N, K, P, Ca, and B) are very often correlated
with fruit quality and disorders. Potassium, in most cases,
increases fruit size, yield, acidity, and color, but decreases fruit
firmness. Ca increases fruit firmness and lowers disorders (40).

Mineral contents in the investigated apple samples are
presented in Table 3. In samples from the NIBIO Ullensvang
area, potassium was the most dominant mineral with the 2-year
mean of 5,239.41 ± 1,208.13 mg/kg, followed by zinc with a
2-year mean of 4,499.88 ± 1,956.57 mg/kg. In analyzed samples
from Njøs, the order was reversed: the most abundant mineral
was zinc (2-year mean 9,805.33 ± 4,458.70 mg/kg) followed by
potassium (2-year mean 2,451.02± 776.82 mg/kg).

Determination of Polyphenolic Compounds and

Polyphenolic Profile
The results of the UHPLC-DAD MS/MS showed the presence of
29 phenolic compounds, of which 12 were phenolic acids. The
results were presented by descriptive analysis, which was done
on average values over 2 years, for apple samples from the NIBIO
Ullensvang area, and Njøs (Table 4). The dominant content
of chlorogenic acid, 3-O-caffeoylquinic acid, and phlorizin was
noted. These compounds contributed themost to the total sum of
all polyphenolic compounds (Table 4). The next were quercetin
3-O-glucoside and quercetin 3-O-rhamnoside. Obtained values
for chlorogenic acid, phlorizin, and quercetin derivatives were
similar to those published for apples from various European
countries (41, 42). The importance of the quercetin derivatives
was observed for apple pomace by other authors (43), as well as
the dominant content of 5-O-caffeoylquinic acid and phloretin
derivatives (36).

It could be noted that many polyphenolic compounds showed
higher content in apples from the NIBIO Ullensvang area,

which provide a twice-higher sum of polyphenolic compounds
(802.13 in contrast to 400.50 mg/kg dw for Njøs Table 4). Several
polyphenolic compounds showed notable differences between
apples from the two areas. Thus, aesculetin and kaempferol
3-O-glucoside did not quantify in the NIBIO apples, and
p-hydroxyphenylacetic acid and catechin were absent in all
samples from Njøs (Table 4). Moreover, gallic acid, vanillic
acid, eriodictyol, and naringenin were also absent in most
samples from Njøs, with the exception of one sample (no. 81,
“Enestaende”), which explains the values of mean value and
standard deviation in Table 4. Similar to that, sinapic acid was
present in an amount of 38.50 mg/kg dw in one sample (no.
83, “Franskar” from Njøs) without it appearing in other Njøs
samples, while its accumulation in NIBIO samples was diverse,
and with lower content (up to 16.48 mg/kg dw). These results
were in line with the statement of other authors about the
different properties of apples that depend on the growing location
(41). The results of phenolic compounds were similar to the
values published by other authors (44), who analyzed peel and
pulp in four different apple varieties. In addition to their results
for apple pulp samples (44), the content of phenolic acids (such
as chlorogenic acid, p-hydroxybenzoic acid, syringic acid, and
vanillic acid, Table 4) also showed similarities to the results
obtained for apple peel samples (44). Furthermore, quantified
contents of polyphenolic compounds (Table 4) were in the same
order of magnitude as the results that various authors published
for apple samples (20, 41, 42, 44–46). Comparing the same
apple varieties (“Franskar,” “Fuhr,” “Furuholm,” and “Løeple”),
cultivated in different areas, yielded higher quantified values of
polyphenolic compounds in samples from the NIBIO Ullensvang
area than from Njøs (Table 4).

With UHPLC-LTQ OrbiTrap MS analysis performed on nine
indigenous apple samples from the NIBIO Ullensvang area
(Table 5), 47 phenolic compounds were identified, of which 23
phenolic acids and their derivatives, along with 24 flavonoids and
their derivatives. Moreover, more glycosides have been identified
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TABLE 4 | Descriptive analysis of the content of phenolic compounds (mg/kg dw), total phenolic content (TPC, g GAE/kg dw), and relative scavenging activity (RSA,

mmol TE/kg dw) in Norwegian apple samples from the NIBIO Ullensvang area (no. 1–74) and from Njøs (no. 75–103) during 2-year harvesting.

Norwegian area NIBIO Ullensvang area Njøs

Parameter Min Max Mean SD Min Max Mean SD

3-O-Caffeoylquinic acid 0 579.58 303.85 128.58 0 138.22 47.95 25.20

Caffeic acid 0.31 5.99 2.15 1.17 0 8.12 1.84 2.28

Chlorogenic acid 28.40 904.72 323.97 200.36 0 664.08 174.87 244.74

Ferulic acid 0.15 3.03 1.19 0.66 0 1.84 0.70 0.43

Gallic acid 0.02 14.53 1.16 2.83 0 0.09 <0.01 0.02

p-Coumaric acid 0.37 7.56 1.94 1.38 0 3.69 0.71 0.94

p-Hydroxybenzoic acid 0.17 10.16 1.42 1.33 0.07 2.34 0.33 0.44

p-Hydroxyphenylacetic acid 0 0.89 0.09 0.14 0 0 0 0

Protocatechuic acid 0.86 20.36 5.36 4.70 0 9.97 1.18 2.51

Sinapic acid 0 0.57 0.04 0.11 0 38.50 1.33 7.15

Syringic acid 0 16.48 0.60 2.19 0 5.86 0.36 1.14

Vanillic acid 0.15 0.85 0.36 0.01 0 0.42 0.01 0.08

Acacetin 0 1.41 0.29 0.29 0 0.38 0.13 0.11

Aesculetin 0 0 0 0 0 9.15 1.84 2.65

Catechin 0 98.98 8.63 19.91 0 0 0 0

Eriodictyol 0 0.54 0.10 0.09 0 0.07 <0.01 0.01

Isorhamnetin 3-O-glucoside 0.06 26.65 5.25 4.42 0 19.89 7.32 3.79

Isorhamnetin 3-O-rutinoside 0.10 6.06 1.30 1.26 0.08 6.61 0.89 1.50

Kaempferol 0 0.81 0.24 0.23 0 1.19 0.12 0.27

Kaempferol 3-O-glucoside 0 0 0 0 0 23.64 8.08 6.25

Kaempferol 7-O-glucoside 1.00 8.44 2.90 1.52 0 39.57 16.11 8.00

Naringenin 0 0.34 0.12 0.07 0 0.17 0.01 0.03

Naringin 0 13.33 3.37 2.82 0 7.20 2.29 1.78

Phloretin 0 2.27 0.36 0.29 0 6.41 0.79 1.19

Phlorizin 5.97 118.09 55.47 30.70 0 581.13 65.14 102.70

Quercetin 1.80 36.10 11.62 6.97 0 32.34 11.29 8.17

Quercetin 3-O-glucoside 3.67 86.47 33.01 15.66 0 56.56 22.68 13.25

Quercetin 3-O-rhamnoside 6.15 64.02 31.05 14.09 0 71.60 28.40 19.50

Rutin 0.07 30.88 6.27 6.65 0 28.78 6.12 7.44

Sum of phenolic compounds 177.45 1,684.72 802.13 324.37 53.89 953.43 400.5 290.26

TPC 3.47 20.59 8.43 3.13 5.86 17.34 9.00 2.49

RSA 5.63 103.52 39.18 17.64 33.69 128.24 66.57 21.20

(Table 5) than previously quantified by UHPLC-DAD MS/MS
(Table 4). Their fragmentation pathway showed occurring
the MS2, MS3, and MS4 fragments (Table 5). Deficiency of
MS4 fragments was observed for several compounds (12
phenolic acids and derivatives, and 2 flavonoids), but still MS4

fragments were presented in most polyphenolic compounds.
Of all identified compounds, 31 polyphenolic compounds
were confirmed in all nine apple samples (17 flavonoids and
derivatives, and 14 phenolic acids and derivatives; Table 5).
Among four identified favan-3-ols, epicatechin and B-type
proanthocyanidin isomer 2 were confirmed in all nine apple
samples. Nevertheless, identified flavanols (epicatechin, catechin,
and B type proanthocyanidins) were found in many apple
samples published by other authors (41, 42, 45, 46, 59). These
compounds increase the antioxidant potential of samples, as
was noted that flavanol-3-ols, moreover procyanidins, present

higher antioxidants than other flavonoids (60). In addition, other
authors (20) showed a high correlation between antioxidant
activity and flavan-3-ols, known as high radical scavengers.
Polyphenolic profiles of nine indigenous apple samples (Table 5)
showed the most similarities between samples no. 15 “Fuhr”
and no. 72 “Vinterrosenstips” (only one difference between
them was found, presence of p-hydroxyphenylacetic acid in no.
72, Table 5). The next pairs of apples that showed similarity
(with three differences between them) were no. 47 “Raud
Gravenstein” and no. 68 “Tveiteple”; no. 68 “Tveiteple” and no. 72
“Vinterrosenstips”; no. 69 “Ulgenes” and no. 71 “Vanleg Torstein”
(Table 5).

Relying on the previously described differences between apple
samples from two areas (observed from the quantification of
polyphenols, Table 4), confirmed differences could be noted
from their polyphenolic profiles (Table 5). The observations
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TABLE 5 | Phenolic profile of nine Norwegian apple samples from the NIBIO Ullensvang area (sample no. 15 “Furuholm,” “Fuhr,” no. 30 “Kaupanger,” no. 44 “Prins,” no. 47 “Raud Gravenstein,” no. 66 “Tormodseple,”

no. 68 “Tveiteple,” no. 69 “Ulgenes,” no. 71 “Vanleg Torstein,” and no. 72 “Vinterrosenstips”).

tR, min Compound name Molecular

formula,

[M–H]−

Calculated

mass,

[M–H]−

Exact

mass,

[M–H]−

1

ppm

MS2 fragments,

(% base peak)

MS3 fragments,

(% base peak)

MS4 fragments,

(% base peak)

15 30 44 47 66 68 69 71 72 References

4.10 Protocatechiuic acid

O-hexoside

C13H15O
−
9 315.07216 315.07178 1.18 108 (9), 109 (12),

151 (8), 152 (49),

153 (100), 163 (9),

165 (13)

108 (22), 109 (100) 81 (63), 123 (100) + + + + – + + + + (47)

4.22 Gallic acida C7H5O
−
5 169.01425 169.01398 1.60 125 (100) 107 (100) NR + + + + + + + + +

4.56 Protocatechiuic

acida
C7H5O

−
4 153.01933 153.01893 2.65 109 (100), 110 (5) 65 (100), 81 (71) NR + + + + + + + + +

4.80 3-O-Caffeoylquinic

acida
C16H17O

−
9 353.08781 353.08727 1.51 135 (7), 179 (32),

191 (100), 192 (4)

85 (92), 109 (21),

111 (47), 127

(100), 171 (26),

173 (72)

81 (16), 85 (100),

95 (16), 99 (15),

109 (12)

+ – + + + + – – +

4.96 Caffeic acid

hexoside

C15H17O
−
9 341.08781 341.08768 0.36 135 (9), 147 (10),

161 (42), 179

(100), 180 (6), 203

(8), 281 (4)

135 (100) 91 (12), 107 (100),

117 (30)

+ + + + + + + + + (48)

5.07 5-O-Caffeoylquinic

acida
C16H17O

−
9 353.08781 353.08754 0.74 179 (6), 191 (100),

192 (5), 305 (5),

315 (3)

85 (100), 93 (49),

111 (25), 127 (69),

171 (29), 173 (62)

NR + + – + + + – – +

5.10 B type

proanthocyanidin

isomer 1

C30H25O
−
12 577.13515 577.13293 3.85 287 (8), 289 (24),

407 (53), 425

(100), 426 (8), 451

(26), 559 (8)

273 (7), 381 (6),

407 (100)

281 (94), 283 (37),

285 (100), 297

(36), 389 (35)

– + – – – – + + – (49)

5.44 5-O-Caffeoylquinic

acid isomer

C16H17O
−
9 353.08781 353.08751 0.84 179 (3), 191 (100) 85 (94), 93 (58),

111 (36), 127

(100), 171 (26),

173 (72)

81 (5), 83 (20), 85

(100), 99 (33), 109

(24)

+ + + + + + + + + (50, 51)

5.49 Catechina C15H13O
−
6 289.07176 289.07106 2.44 179 (10), 203 (8),

205 (33), 231 (6),

245 (100), 246 (7),

247 (5)

161 (19), 175 (11),

187 (23), 188 (15),

203 (100), 227 (28)

157 (13), 161 (29),

175 (100), 185

(18), 188 (58)

+ + – + – – + + +

5.54 p-Coumaric acid

hexoside

C15H17O
−
8 325.09289 325.09283 0.19 119 (9), 145 (100),

163 (76), 187 (43),

205 (8), 265 (15),

289 (48)

117 (100) NR + + + + + + + + + (48)

5.57 3-O-p-

Coumaroylshikimic

acid

C16H15O
−
7 319.08233 319.08224 0.26 119 (10), 137 (9),

139 (6), 145 (100),

146 (8), 257 (5),

275 (6)

117 (100) NR + – + + + + – + + (52)

5.68 B type

proanthocyanidin

isomer 2

C30H25O
−
12 577.13515 577.13373 2.45 287 (6), 289 (17),

407 (46), 425

(100), 426 (7), 451

(19), 559 (5)

273 (7), 381 (5),

407 (100)

281 (73), 283 (37),

285 (100), 297

(31), 389 (27)

+ + + + + + + + + (49)

(Continued)
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TABLE 5 | Continued

tR, min Compound name Molecular

formula,

[M–H]−

Calculated

mass,

[M–H]−

Exact

mass,

[M–H]−

1

ppm

MS2 fragments,

(% base peak)

MS3 fragments,

(% base peak)

MS4 fragments,

(% base peak)

15 30 44 47 66 68 69 71 72 References

5.83 Ferulic acid hexoside C16H19O
−
9 355.10346 355.10282 1.80 134 (4), 160 (4),

175 (33), 193

(100), 217 (39),

235 (6), 295 (4)

134 (100), 149

(31), 178 (17)

106 (100) + + + + + + + + + (48)

5.96 Caffeic acida C9H7O
−
4 179.03498 179.03485 0.76 89 (16), 113 (5),

119 (6), 135 (100),

136 (6), 143 (13),

161 (9)

91 (100), 93 (22),

107 (99), 117 (6)

NR + + + + + + + + +

6.00 Epicatechina C15H13O
−
6 289.07176 289.07127 1.69 179 (9), 203 (8),

205 (31), 231 (4),

245 (100), 246 (7),

247 (4)

161 (18), 175 (10),

187 (22), 188 (13),

203 (100), 227 (25)

161 (38), 174 (24),

175 (100), 185

(25), 188 (80)

+ + + + + + + + +

6.06 4-O-p-

Coumaroylquinic

acid

C16H17O
−
8 337.09289 337.09266 0.68 163 (6), 173 (100) 71 (19), 93 (100),

109 (8), 111 (54),

155 (14)

NR + + + + + + + + + (53, 54)

6.07 p-Coumaric acida C9H7O
−
3 163.04007 163.03986 1.28 101 (33), 113 (15),

119 (100), 120

(13), 131 (48), 133

(32), 143 (21)

78 (15), 91 (100) NR + + + + + + + + +

6.12 3-O-Caffeoylshikimic

acid

C16H15O
−
8 335.07724 335.07721 0.09 135 (25), 161 (3),

179 (100), 180 (7)

135 (100) 79 (100), 107 (16),

108 (35), 117 (6)

+ – – – + – – + + (55)

6.15 p-Hydroxybenzoic

acida
C7H5O

−
3 137.02442 137.02436 0.44 109 (8), 93 (100) 93 (100) NR + + + + + + + + +

6.34 p-

Hydroxyphenylacetic

acida

C8H7O
−
3 151.04007 151.03998 0.60 121 (14), 107

(100), 95 (70), 79

(16), 59 (23)

123 (10), 95 (32),

79 (100), 69 (10),

51 (18)

108 (100) – + + – – – – – +

6.35 Methyl

3-O-caffeoylquinate

C17H19O
−
9 367.10346 367.10297 1.31 133 (6), 135 (22),

161 (100), 162 (7),

179 (3), 193 (3),

335 (3)

133 (100) 105 (100) + + + + + + + + + (56, 57)

6.46 Aesculetina C9H5O
−
4 177.01933 177.01923 0.56 149 (8), 133 (100),

105 (12), 89 (4)

89 (100) NR – – – – – – – – –

6.58 Methyl

5-O-caffeoylquinate

C17H19O
−
9 37.10346 367.10313 0.88 134 (3), 135 (44),

136 (4), 161 (11),

179 (100), 180 (9),

191 (20)

135 (100) 79 (57), 91 (19),

106 (57), 107

(100), 117 (10)

+ + + + – + + + +

6.65 Syringic acida C9H9O
−
5 197.04555 197.04550 0.25 183 (100), 153

(41), 138 (10)

167 (100), 138 (9),

123 (5)

NR – + + + – – – + –

6.67 3-Hydroxyphloretin

2’-O-pentosyl-(1–6)-

hexoside

C26H31O
−
15 583.16684 583.16461 3.83 167 (3), 271 (5),

289 (100)

123 (3), 125 (40),

167 (100), 245

(17), 271 (71)

123 (100), 125 (14) + + + + + + + + + (49)
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TABLE 5 | Continued

tR, min Compound name Molecular

formula,

[M–H]−

Calculated

mass,

[M–H]−

Exact

mass,

[M–H]−

1

ppm

MS2 fragments,

(% base peak)

MS3 fragments,

(% base peak)

MS4 fragments,

(% base peak)

15 30 44 47 66 68 69 71 72 References

6.78 Quercetin

3-O-glucosidea
C21H19O

−
12 463.08820 463.08597 4.82 300 (37), 301

(100), 302 (10)

151 (75), 179

(100), 255 (31),

257 (12), 271 (46),

272 (18)

151 (100) + + + + + + + + +

6.91 Methyl 3-O-p-

coumaroylquinate

C17H19O
−
8 351.10854 351.10794 1.71 117 (5), 119 (9),

145 (100), 146 (6),

163 (3)

117 (100) NR + + + + + + + + + (5)

6.93 Rutina C27H29O
−
16 609.14611 609.14592 0.31 301 (100) 179 (100), 151

(78), 107 (4)

151 (100), 107 (2) + + + + + + + + +

7.04 Quercetin

3-O-pentoside

isomer 1

C20H17O
−
11 433.07764 433.07641 2.83 300 (15), 301

(100), 302 (10)

151 (79), 179

(100), 255 (18),

271 (18), 273 (19),

283 (16)

151 (100) + + + + + + + + + (49)

7.14 Phloretin

2’-O-pentosyl-(1–6)-

hexoside

C26H31O
−
14 567.17193 567.16998 3.44 167 (5), 273 (100),

274 (10)

123 (4), 125 (3),

167 (100)

123 (100), 125

(13), 151 (3)

+ + + + + + + + + (49)

7.16 3-Hydroxyphloretin C15H13O
−
6 289.07176 289.07147 1.00 125 (39), 167

(100), 245 (19),

271 (74)

123 (100), 125

(14), 151 (3)

NR + + – + + + + + + (58)

7.22 Quercetin

3-O-pentoside

isomer 2

C20H17O
−
11 433.07764 433.07756 0.18 300 (11), 301

(100), 302 (11)

151 (78), 179

(100), 255 (12),

271 (9), 273 (18),

283 (14)

151 (100) + + – + + + + + + (49)

7.32 Quercetin

3-O-rhamnosidea
C21H19O

−
11 447.09329 447.09319 0.21 300 (20), 301

(100), 302 (8)

151 (77), 179

(100), 255 (29),

271 (41), 273 (20),

283 (21)

151 (100) + + + + + + + + +

7.37 Isorhamnetin

3-O-rutinosidea
C28H31O

−
16 623.16176 623.16173 0.05 315 (100), 300

(20), 271 (9), 255

(6)

300 (100), 287 (5),

272 (4)

271 (100), 255

(50), 151 (4)

+ + + + + + + + +

7.43 Vanillic acida C8H7O
−
4 167.03498 167.03492 0.36 153 (10), 152 (79),

124 (11), 123

(100), 108 (222)

108 (100) 123 (29), 80 (35),

78 (100)

+ + + + + + + + +

7.50 Naringina C27H31O
−
14 579.17193 579.17145 0.83 459 (100), 357 (5),

313 (26), 271 (44),

235 (12)

441 (30), 357

(100), 339 (31),

271 (54), 235 (87)

339 (100), 169

(22), 151 (50), 125

(21)

+ – + + + + – – +

7.56 Sinapic acida C11H11O
−
5 223.06120 223.06118 0.09 208 (100), 179

(31), 164 (20)

193 (10), 164

(100), 149 (14),

135 (3)

149 (100), 135 (33) + – + – – + – – +

(Continued)
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TABLE 5 | Continued

tR, min Compound name Molecular

formula,

[M–H]−

Calculated

mass,

[M–H]−

Exact

mass,

[M–H]−

1

ppm

MS2 fragments,

(% base peak)

MS3 fragments,

(% base peak)

MS4 fragments,

(% base peak)

15 30 44 47 66 68 69 71 72 References

7.65 Isorhamnetin

3-O-glucosidea
C22H21O

−
12 477.10385 477.10208 3.71 357 (21), 315 (48),

314 (100), 300 (5),

285 (10), 271 (11)

300 (30), 285

(100), 271 (73),

257 (8), 243 (24)

270 (100) + + + + + + + + +

7.65 Kaempferol

7-O-glucosidea
C21H19O

−
11 447.09329 447.09192 3.06 327 (18), 285 (80),

284 (100), 255 (9)

255 (100), 227 (9) 227 (100), 211 (61) + + + + + + + + +

7.67 Phloretin

2
′

-O-glucoside

(Phloridzin) a

C21H23O
−
10 435.12967 435.12909 1.34 273 (100), 274 (7) 123 (4), 125 (3),

167 (100)

123 (100), 125

(13), 151 (3)

+ + + + + + + + +

7.67 Phloretina C15H13O
−
5 273.07685 273.07674 0.39 123 (3), 125 (3),

167 (100), 168 (6)

123 (100), 125

(12), 151 (3)

81 (100), 95 (64),

97 (4), 105 (3), 108

(5)

+ + + + + + + + +

7.58 Ferulic acida C10H9O
−
4 193.05063 193.05062 0.05 178 (72), 149

(100), 134 (39)

134 (100) NR + + + + + + + + +

8.90 Quercetina C15H9O
−
7 301.03538 301.03479 1.94 151 (46), 179

(100), 180 (4), 193

(3), 257 (6), 271

(5), 273 (8)

151 (100) 63 (5), 65 (3), 83

(13), 107 (100)

+ + + + + + + + +

9.05 Eriodictyola C15O11O
−
6 287.05611 287.05533 2.72 151 (100), 107 (8) 107 (100) 65 (100) + + + + + + + + +

9.93 Naringenina C15H11O
−
5 271.06120 271.05989 4.83 225 (5), 177 (11),

151 (100)

107 (100) 65 (100) + + + + + + + + +

10.11 Kaempferola C15H9O
−
6 285.04046 285.03979 2.35 255 (100), 227 (10) 211 (100), 195 (4),

167 (16)

211 (41), 137 (100) + + + + + + + + +

12.21 Acacetina C16H11O
−
5 283.06119 283.06033 3.04 268 (100) 268 (100), 240 (29) 239 (13), 223 (18),

211 (100), 196

(74), 172 (62)

+ – + + + + – – +

aConfirmed using standards, while the other compounds were identified by evaluation of its HRMS and MSn data (see references in the table).
“NR,” not recorder; “+,” present compound; “–,” not present compound. The bold values refer to the most intense ions.
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that differentiate these apple samples are non-appearance of
aesculetin, and the finding eriodictyol, naringenin, gallic acid,
and vanillic acid in apple samples from the NIBIO Ullensvang
area (Tables 4, 5).

Determination of TPC and RSA
Antioxidant activity expressed as TPC and RSA (Table 4) showed
opposite results from the described quantification of phenolic
compounds. The mean value for RSA was higher for the Njøs
apples (66.57 in contrast to 39.18mol TE/kg dw for NIBIO
samples), while the TPC values were similar (9.00 and 8.43 g
GAE/kg dw, respectively). The maximum TPC and RSA values
for apples fromNjøs were in the same sample (no. 94 “Leriseple”),
while contrary to this, the Pearson coefficient showed very low
independence between TPC and RSA for investigated apples
from both areas (0.18 for NIBIO and 0.35 for Njøs samples).
Considering the qualitative phenolic analysis showed a greater
impact on the antiproliferative activity of apples than the
quantitative analysis (46), a similar observation could be noted
for antioxidant activity in this study. Most of the polyphenolic
compounds showedmaximum values in samples from theNIBIO
Ullensvang area, but the TPC and RSA values did not follow that
observation (Table 4). However, results of TPC were similar to
those published by other authors (43). As suggested by other
authors (61), apple samples showed antioxidant activities that
increase the importance of isolating valuable compounds that
affect these activities. The dependence of antioxidant activity on
apple varieties, observed in this study, was in accordance with the
data from the literature (20).

Statistical Analysis
Statistics Applied on the Results of Sugar

Compounds
The highest positive correlations for sugar content (Figure 2)
were found between arabinose and maltose, maltotriose,
mannitol, panose, and rhamnose (r = 0.902; r = 0.846; r
= 0.885; r = 0.874; r = 0.823, respectively), trehalose, and
panose (r = 0.803). The positive correlations between contents
of maltose, maltotriose, mannitol, xylose, melibiose, panose, and
rhamnose were found, with high correlation coefficients in the
range between 0.756 and 0.944.

The PCA of the sugar content in apple samples
(Supplementary Figure S1) explained that the first three
principal components summarized 70.90% of the total variance
in the 22 parameters (sorbitol, trehalose, arabinose, glucose,
fructose, sucrose, turanose, glycerol, galactitol, galactose, ribose,
isomaltose, isomaltotriose, maltose, maltotriose, mannitol,
xylose, melibiose, panose, rhamnose, raffinose, and stachyose).
According to the results of the PCA, the content of arabinose
(which contributed 7.9% of the total variance, based on
correlations), ribose (7.4%), maltose (8.5%), maltotriose (8.8%),
and mannitol (8.1%) showed negative influence on PC1. In
contrast, the content of fructose (9.3%), turanose (9.1%),
glycerol (18.3%), isomaltose (18.3%), and isomaltotriose
content (16.7%) positively influenced the calculation of PC2
(Supplementary Figure S1). The content of glucose (28.4%)

and sucrose (17.7%) positively affected the third principal
component (PC3).

The results of the applied statistical analysis on sugar
compounds showed that apple samples from the NIBIO
Ullensvang area and Njøs differ mainly in the content of
galactitol, sorbitol, galactose, trehalose, and arabinose.

Statistics Applied on the Results of Organic Acids
The highest positive correlations in organic acid contents were
found between citric and malic and oxalic acids content (r =

0.825; r = 0.692, respectively), maleic and quinic acids content
(r = 0.724), malic and butyric (r = 0.774), pyruvic and propionic
(r = 0.678), shikimic and propionic and butyric (r = 0.792 and r
= 0.720, respectively), and propionic and butyric and oxalic acids
content (r = 0.880 and r = 0.615, respectively; Figure 3).

The PCA of the organic acids in apple samples
(Supplementary Figure S2) explained that the first three
principal components outlined 75.28% of the total variance
in the 11 parameters (citric, maleic, malic, pyruvic, shikimic,
lactic, propionic, butyric, quinic, oxalic, and fumaric). The
content of citric (14.3% of the total variance, depending on
correlations), malic (13.3%), pyruvic (9.3%), shikimic (12.6%),
propionic (12.8%), butyric (18.3%), and oxalic acids content
influenced negatively to PC1 calculation. The content of fruit
acid such as pyruvic (14.5% of the total variance, depended
on correlations) and fumaric (13.7%), influenced positively to
the PC2 coordinate, while the content of maleic (27.4%) and
quinic (26.7%) influenced negatively to the PC2 coordinate
(Supplementary Figure S2). The content of fruit acid such as
maleic (12.2% of the total variance, depended on correlations),
lactic (46.5%), and quinic (11.1%) affected positively to PC3
calculation (Supplementary Figure S2), while the content of
malic acid (7.4%) influenced negatively to PC3 coordinate.

From the applied statistical analysis results on the organic
acids content, the samples from the NIBIO Ullensvang area and
Njøs differed the most in the citric and butyric acids content.

Statistics Applied on the Results of Minerals
Statistically significant correlations (p ≤ 0.05) were found
between several element contents in the samples (Figure 4). The
circle’s color is defined by the correlation coefficients value, while
the circle’s size is defined by the p-value of the correlation.
The content of Mn was positively correlated to Fe, K, Mg
content (r = 0.664; r = 0.790; and r = 0.814, respectively).
The content of Na was positively correlated to K, Mg, and Mn
content (r = 0.652; r = 644; and r = 0.604, respectively). The
content of S was positively correlated to K, Mg, and P content
(r = 0.647; r = 0.657; and r = 0.628, respectively). Similar results
for correlation between Mg and S, K and S, and between S and
P, were determined in “Honeycrisp” apples grown on different
rootstocks in Champlain valley in New York and Western New
York climatic conditions (62, 63).

The PCA of the metal content in samples explained that
the first three principal components outlined 66.37% of the
total variance in the 13 parameters (Al, B, Ca, Cu, Fe, K, Mg,
Mn, Na, Zn, P, S, and N). According to the results of the
PCA, the content of Ca (which contributed 13.1% of the total
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FIGURE 2 | Color correlation graph between sugar content in apple samples.

variance, based on correlations), K (17.3%), Mg (17.5%), Mn
(14.7%), Na (10.5%), and S (11.1) exhibited positive influence to
the first principal component (PC1). The content of Al (20.1%
of the total variance, based on correlations), P (24.2%), and
S (8.6%) showed a positive influence on the second principal
component (PC2), while B (12.7%), Na (10.8%), and Zn content
(15.3%) exerted a negative score according to PC2 component.
B content (16.0% of the total variance, based on correlations)
showed a positive influence on the third principal component
(PC3) calculation, while the content of Cu (24.7%), Fe (18.0%),
and N content (31.8%) exerted a negative influence to PC3
(Supplementary Figure S3).

The samples from the NIBIO Ullensvang area and
Njøs differ mainly in the content of Al, P, S, and Zn.
Statistical analysis shows noticeable differences for apple
samples from these two areas. As the higher content of
macronutrients was already noted in samples from the NIBIO
Ullensvang area (Table 3), PCA confirmed these differences
(Supplementary Figure S3).

Statistics Applied on the Results of Phenolics, TPC,

and RSA
Applied statistical analysis on the results of polyphenolic content
and TPC and RSA is presented in Figure 5. The highest positive
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FIGURE 3 | Color correlation graph between fruit acids content in apple samples.

correlations were found between caffeic acid and chlorogenic acid
(r = 0.646), p-coumaric acid and p-hydroxyphenylacetic acid,
and protocatechuic acid (r = 0.622 and r = 0.650, respectively),
p-hydroxyphenylacetic acid and protocatechuic acid (r = 0.615),
naringenin and vanillic acid (r = 0.654), and quercetin and
quercetin 3-O-glucoside (r = 0.599; Figure 5). In contrast,
negative correlations were found between 3-O-caffeoylquinic
acid and kaempferol 7-O-glucoside (r = −0.597), vanillic acid,
and kaempferol 7-O-glucoside (r =−648).

The PCA of the content of polyphenolic compounds in
apple samples (Supplementary Figure S4) showed that the
first three principal components summarized 43.02% of the

total variance in the 31 parameters (3-O-caffeoylquinic acid,
caffeic acid, chlorogenic acid, ferulic acid, gallic acid, p-coumaric
acid, p-hydroxybenzoic acid, p-hydroxyphenyl acetic acid,
protocatechuic acid, sinapic acid, syringic acid, vanillic acid,
acacetin, aesculetin, catechin, eriodictyol, isorhamnetin 3-O-
glucoside, isorhamnetin 3-O-rutinoside, kaempferol, kaempferol
3-O-glucoside, kaempferol 7-O-glucoside, naringenin, naringin,
phloretin, phlorizin, quercetin, quercetin 3-O-glucoside,
quercetin 3-O-rhamnoside, and rutin). In addition, noted
differences in the content of polyphenolic compounds for
samples no. 81 and 83 (previously described in Section
Determination of Polyphenolic Compounds and Polyphenolic
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FIGURE 4 | Color correlation graph between metal content in apple samples.

Profile) were more obvious in PCA (Supplementary Figure S4).
Furthermore, the content of p-coumaric acid (8.1% of the
total variance, according to correlations), protocatechuic acid
(7.5%), and vanillic acid (7.7%) exhibited a positive influence on
the PC1 coordinate (Supplementary Figure S4). The content
of aesculetin (11.6%), isorhamnetin 3-O-glucoside (10.7%),
kaempferol 3-O-glucoside (7.1%), kaempferol 7-O-glucoside
(7.4%), quercetin 3-O-glucoside (10.8%), and rutin (7.4%)
showed a negative influence to PC2 coordinate computation
(Supplementary Figure S4). In addition, the content of
isorhamnetin 3-O-glucoside (12.8%) and kaempferol (11.5%)
showed a positive influence on PC3 coordinate calculation.

According to the results of statistics, apple samples from the
NIBIO Ullensvang area and Njøs differed mainly in kaempferol
3-O-glucoside, kaempferol 7-O-glucoside, RSA, vanillic acid,
naringenin, 3-O-caffeoylquinic acid, and eriodyctol content. In
addition, the PCA results (Figure 4, Supplementary Figure S4)
complemented the previously observed differences between
apples from these two areas. Moreover, these compounds
could be used to differentiate Norwegian apple samples from
different areas. The results were in accordance with the
observations of other authors, which indicate the dependence
of the chemical profile of apples on location (41) and
variety (45).
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FIGURE 5 | Color correlation graph between phenolic content in apple samples (3OCA, 3-O-caffeoylquinic acid; CA, caffeic acid; ChA, chlorogenic acid; FA, ferulic

acid; GA, gallic acid; pCA, p-coumaric acid; pHBA, p-hydroxybenzoic acid; pHPA, p-hydroxyphenylacetic acid; PA, protocatechuic acid, SiA, sinapic acid; SyA,

syringic acid; VA, vanillic acid; Aca, acacetin; Aes, aesculetin; Cat, catechin; Eri, eriodictyol; I3OG, isorhamnetin 3-O-glucoside; I3OR, isorhamnetin 3-O-rutinoside;
Kae, kaempferol; K3OG, kaempferol 3-O-glucoside; K7OG, kaempferol 7-O-glucoside; Nrnn, naringenin; Nrn, naringin; Pht, phloretin; Phz, phlorizin; Que, quercetin;
Q3OG, quercetin 3-O-glucoside; Q3OR, quercetin 3-O-rhamnoside; Rut, rutin).

CONCLUSION

Through the extensive analysis that consisted of using modern
analytical techniques and applied chemometrics, we analyzed
103 Norwegian apple varieties. The analyzed apple samples were
differentiated by cultivation locations based on obtained results.
Apples from the Ullensvang area showed higher nutritional
values due to higher content of all detected sugars (744.54
g/kg dw), sugar alcohols (60.33 g/kg dw), organic acids
(90.81 g/kg dw), and polyphenolic compounds (802.13 mg/kg
dw) compared to those obtained for apples from Njøs. The

most dominant minerals in all samples were potassium and
zinc, but in the reverse order represented in samples from
different areas. Moreover, applied statistical analysis showed a
more detailed distinction between the apple cultivars of two
Norwegian areas.

Due to the content of quantified polyphenolic compounds,
as well as a significant number of identified polyphenolic
compounds, these different apple cultivars could be treated as
valuable health products. Given the observed antioxidant activity,
apple samples could provide health benefits by preventing free
radical-induced oxidative reactions. Overall, these results could
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be used for some further potential uses of Norwegian apples as
an ingredient for functional foods or some following breeding
programs. By using the distinctive UHPLC LTQ OrbiTrap MS
technique, it was possible to determine polyphenolic profiles
of nine selected indigenous apples, which provided additional
parameters for the assessment of the apple’s growing location.
Besides, observed polyphenols in apple samples from Norway
could be considered as potential markers for a more detailed
assessment of apple’s cultivation location.
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