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Tana Shtylla Kika 5, Dušan Marinković 3, Gorica Vuković 6 and Magdalena Cara 4

����������
�������
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Abstract: The aim of this research was the visual characterization and investigating the effects of
Alternaria spp. contaminated wheat grains in the starter stage of broilers nutrition on productive
parameters and oxidative stress. The research was divided into two phases. Bunches of wheat in post-
harvest period of year 2020 was collected from a various locality in Serbia and Albania. In the first
phase, collected samples were visual characterized by Alternaria spp. presence by color measurement
methods. Gained results are conferred in the range of the color properties of grain color properties of
Alternaria toxins. Wheat grain samples were significantly different (p < 0.05) in terms of all measured
color parameters (L*, a*, b*). Classification of field fungi in analyzed wheat grain samples showed that
the significant field fungi were Rhizopus spp., followed by Alternaria spp., and Fusarium spp. In the
second phase, biological tests with chickens were carried out during the broiler chickens’ dietary
starter period in the first 14th days of age. At the beginning of the experiment, a total of 180-day-old
Ross 308 strain broilers were equally distributed into three dietary treatments, with four replicates
each. Dietary treatments in the experiments were as follows: basal diet without visual contamination
of Alternaria spp. with 25% wheat (A1), a basal diet with visual contamination of Alternaria spp. with
25% wheat from Serbia (A2), basal diet with visual contamination of Alternaria spp. with 25% wheat
from Albania (A3). The trial with chickens lasted for 14 days. After the first experimental week,
wheat infected with Alternaria spp. in treatment A2 and A3 expressed adverse effects. The highest
body weight of chickens of 140.40 g was recorded in broilers on control treatment A1 with statistically
significant differences (p < 0.05) compared to treatments A2 (137.32 g) and A3 (135.35 g). At the end of
the second week of test period, a statistically significant (p < 0.05) difference in body weight of broiler
chickens could be noticed. The highest body weight of 352.68 g was recorded in control treatment
A1, with statistically significant differences compared to other Alternaria spp. treatments. The lowest
body weight of chickens was recorded in treatment A3 (335.93 g). Results of feed consumption
and feed conversion ratio showed some numerical differences between treatments but without any
statistically significant differences (p > 0.05). Alternaria spp. contaminated diet increased glutathione
(GSH), glutathione reductase (GR), alanine aminotransferase (ALT), and aspartate aminotransferase
(AST) and decreased peroxidase (POD) and superoxide dismutase (SOD) serum levels, respectively.
Built on the achieved results, it can be concluded that the wheat contaminated with Alternaria spp. in
broilers nutrition negatively affected growth, decreased oxidative protection and interrupted chicken
welfare in the first period of life.
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1. Introduction

Corn and wheat represent the primary energy source in the food animal’s daily diet,
while wheat has been considered the third most-produced feedstuff globally [1]. In the
last ten years, studies and researchers have been struggling with the fungi of the genus
Alternaria, which has grown to be the leading cause of wheat grains contamination [2].
The essential characteristics of Alternaria genera is the production of melanin and the host-
specific plant–fungi/toxin interaction [3–5]. In addition, direct melanin emerges an indirect
role in virulence, as well [6]. Melanin poses the ability to function as the shield in plant
fungi protections versus ecological stress or unfavorable conditions, which gives fungus
permanency and endurance. Furthermore, melanin promptly responds with free oxygen
radicals, versus the pathogen’s infiltration in the plant-host cells [7,8]. The blackening
of the wheat grain lobes prior to cropping is typical indicator of contamination with
Alternaria spp. [9]. At hand there is several forms of discoloration that can alter ordinary
wheat (Triticum aestivum L.). In nearly all areas where wheat is cultivated, the black
point is usually correlated by Alternaria alternata as a common discoloration of seed [10].
The staining usually appears in the external pericarp and internal grain tissue and could
broaden beside its adaxial side. Such kinds of grain color changes differ drastically in
frequency and seriousness depending on grain during the maturation. Biotic and abiotic
stresses can cause wheat grain color changes, often caused by high humidity and high
temperatures [11]. Those kinds of conditions are very favorable for fungi and mycotoxins
occurrence in general [12,13]. Recently it has been confirmed that high humidity levels
might stimulate the sporadic expansion of black point on wheat grain under controlled
conditions [14]. A. alternata was the primary cause related to black point occurrence on
wheat grain [15]. Likewise, pathogenicity and decrease of quality of wheat grains are
influenced by a number of Alternaria spp. the producers of toxic secondary metabolites
known as Alternaria mycotoxins [16,17]. Alternaria mycotoxins as alternariol (AOH) [18],
tenuazonic acid (TzA) [19], alternariol monomethyl ether (AME) [20], altenuene (ALT) [2],
altertoxin I (ATX-I) [21], alterotoxin II (ATX-II) [18], and stemphyltoxin III (STTX-III) [22]
could be toxic for animal health [23].

Some of the previous mentioned toxins could cause a serious health damages in
animals when ingested, between them, for instance, fetotoxicity and somatic or functional
deficiencies in the fetus when the mother is exposed to toxins [23]. A. alternata, as a separate
mycotoxin, is mutagenic and clastogenic in various in vitro systems [24]. Moreover, it has
been recommended that Alternaria toxins in grains be accountable for gullet pipe cancer [25].
Consequently, because of toxic effects, Alternaria toxins are of concern for public and animal
health [26]. The European Commission (EC), and European Food Safety Authority (EFSA)
were therefore engaged to give a technical view on the hazards for community and animal
wellbeing associated with the occurrence of Alternaria mycotoxins in the commodities
for human and animal daily nutrition. Subsequently, A. alternata have been chemically
characterized, and incidence in feed was recorded [27]. Nevertheless, more than a few
other Alternaria toxins have been classified as well, respectively [28].

Assessment of Alternaria toxins consumption by food animals through daily feeding
have been restricted to broilers since poultry have been single one animal race where
certain information about mycotoxin toxicity is appropriate for hazard evaluation [29–31].
Given that the incidence of feed data was lacking for the majority of the Alternaria toxins,
the exposure assessments have been restricted to AOH toxin. Estimated lower bound
and upper bound introductions to alternariol (AOH) were around 0.003 mg/day and
0.006 mg/day, for chickens and layers, respectively.

Broilers in production conditions are subjected to a variety of stressors [32]. The ad-
ditional reactive oxygen species (ROS) and reactive nitrogen species (RNS) production
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and oxidative stress are the essential harmful outcomes [33]. In the evolutionary process,
antioxidant defense mechanism were built in birds to be able to stay alive in an oxygenated
atmosphere [34]. They consist of a dense system of inside integrated antioxidant enzymes,
for instance, glutathione (GSH), coenzyme Q (CoQ), and outwardly provided by vitamins,
carotenoids, and antioxidants [34]. Furthermore, all antioxidants in the body work to-
gether to sustain the best oxidoreduction equilibrium [35]. This equilibrium is a crucial
component in supplying the required preconditions for cells indicating, stress adjustment,
and homeostasis upkeep [36]. While ROS and RNS are critical signaling molecules, their
presence have been rigorously controlled by the antioxidant defense system linked with
various transcript components and vitagenes [37]. Physiology shows that change from
optimum inner and outer circumstances causes stress [38].

Additionally, a complicated flow of controlling systems is implicated in the stress
reaction, causing the metabolic alterations triggering weakened live performance in broil-
ers [39]. When the ROS and RNS construction outstrips the antioxidant defense mechanism
ability to neutralize them, oxidative stress arises [38]. That includes polyunsaturated fatty
acids (PAFAs), proteins, and DNA [40], take the lead to damaging outcomes in wellbeing,
progress, development, and overall animal welfare [41].

Contemplating lucking research results and significant information’s on Alternaria
mycotoxins and that the biochemical composition of more than a few is identified, this
research’s precise aim was to visually characterize and investigate the effects of Alternaria
spp. contaminated wheat grains in broiler chicken nutrition in the starter stage on pro-
ductive parameters, oxidative stress, and overall welfare of this species of food animals.
Obtained results from this research can serve in the future as the reference material for
creating the new up-to-date guidelines on Alternaria toxins in foodstuffs and feedstuffs.

2. Materials and Methods
2.1. Wheat Samples

Wheat grain samples (Triticum aestivum) were collected in post-harvest time in the
season of 2020 from the region of Serbia (Vojvodina) and Albania (Durrës). Obtained
samples were collected with the appropriate equipment, such as a probe for stationary
grain and a diverter-type mechanical sampler, using a sampling pattern and procedures
designed to collect samples from all areas of the lot. The appropriate size of wheat grain
between 1.5 and 2.5 kg sample was taken from a truck with adequate identified and labeled
bags. Collected samples were handled in such a way as to maintain representativeness.
Samples were stored in a cool and dry place in triple lined paper breathable bags to avoid
mold growth and increase of sample moisture level over 14%.

2.2. Proximate Analyses of Compound Feed for Broilers Chickens

Compound feed for broiler chickens in each experimental treatment were analyzed for
moisture, crude ash, crude protein, crude fat, and crude fiber. All analyses were performed
in triplicate. The moisture content was determined according to AOAC (Association of
Official Analytical Chemists) [42] Method 934.01. Crude protein content was determined
by Kjeldahl method according to the AOAC Method 978.04, crude ash, according to AOAC
Method 942.05, crude fat, according to AOAC Method 920.39 and crude fiber according to
AOAC Method 978.10 (AOAC, 1998). Concentration of total phosphorus (P) and calcium
(Ca) as well as metabolizable energy (ME), was calculated within licenced feed formulation
software.

2.3. Visual Scale Establishing and Color Measurement

Instrumental methods were used to measure the color of wheat grains. The wheat
grain samples color was measured with Minolta Chroma Meter CR-400, and the attach-
ment CR-A50, respectively. The color space defined by the International Commission on
Illumination (CIELAB) L* (lightness), a* (red-green), and b* (yellow-blue), and dominant
wavelength (DWL) was determined using a D65 light source and the observer angle at
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2◦. The tristimulus values of L*, a* and b* readings were calibrated against a standard
white plate (Y = 84.8; x = 0.3199; y = 0.3377). Each wheat ear sample was divided into
four subgroups, and the color of one hundred ears from each subgroup (400 ears from
one sample) was measured on 5 locations. Samples of wheat grains was divided into
4 subgroups, and 5 repetitions measure were applied in each subgroup (20 repetitions per
sample in total) [43].

2.4. Wheat Grain Infection Confirmation

Precisely one hundred wheat grains were counted randomly and used in all the
treatments. Therefore, wheat grain samples must be cleaned with 0.4% NaOCl, and washed
with clean water for 2 min. After cleaning process samples of wheat was placed on Petri
dishes in 4 replicates (25 grains/Petri) containing potato dextrose culture medium. Grains
were incubated at 25 ◦C, in total of 7 days, after which concentration of contamination was
evaluated. For validation of fungi species from each Petri dish 5 randomly wheat grain
was taken out by microscopic inspection after finishing the incubation period [44].

2.5. In Vivo Experimental Part with Broiler Chickens

The test with the broilers was conducted in the wake of the EU legislation and tenet of
the 3Rs contained by Directive 2010/63/EU, as well with the approval of Ethic Commission
for the Protection and Welfare of Experimental Animals EK-I-2020-01. At the beginning of
the investigation, a total of 180-day-old Ross 308 strain broilers were equally distributed into
three dietary treatments, with four replicates each. Dietary treatments in the experiments
were as follows: basal diet without visual contamination of Alternaria spp. with 25% wheat
(A1), a basal diet with visual contamination of Alternaria spp. with 25% wheat from Serbia
(A2), and basal diet with visual contamination of Alternaria spp. with 25% wheat from
Albania (A3). Wheat contamination of Alternaria spp. from control treatment A1 was
prepared as 1/2 mixture of wheat samples from both Serbia and Albania. During the test
period broilers was given feed and water by will e.g., ad libitum, with regularly monitored
and maintained environmental conditions provided by broilers producer. Broilers were
kept on the ground bedding system with the pelleted wheat straw. To control the productive
results of broilers, body weight, feed consumption, and feed utilization were monitored.

2.6. Blood Samples Collection and Hemolysate Preparation

The broiler chickens’ blood was collected by the trained veterinarian from the broil-
ers’ heart by puncture into heparinized sterile tubes. Blood samples were immediately
delivered to the laboratory and centrifugated for 10 min at 1507 g and 4 ◦C. Plasma was re-
moved, following the erythrocytes rinsing in saline three times. The obtained red blood cell
pellet was held in same amount of two filtered water and vortexed afterward. Following
incubation for 60 min at 25 ◦C, the hemolysate was centrifugated during fifteen minutes at
1507 g, after which obtained buoyant was gathered for additional examination [45].

2.7. Determination of Glutathione and Enzymatic Determination

To determine glutathione (GSH) concentration, proteins from hemolysates were di-
vided by increasing half amount of 10% sulfosalicylic acid and centrifugated at 3075 g,
for five minutes, at 4 ◦C. The buoyant was deposited at 4 ◦C, and GSH was determined
the next day. The GSH concentration in the blood hemolysate was determined from the
quantity of sulfhydryl residues [45].

Superoxide dismutase (SOD) activity was determined by the spectrophotometric
method based on the inhibition of adrenaline reduction to adrenochrome at pH 10.2 [45].
The activity of glutathione reductase (GR) was determined from the rate of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidation measured at the absorbance at
340 nm [46]. The concentration of lipid peroxides (LPx) was determined by the thio-
barbituric acid (TBA) assessment [47]. The oxidation of cellular membrane lipids was
measured through the reaction of lipid peroxides with TBA [47]. The determination of
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peroxidase (POD) activity was based on the catalytic oxidation of guayacol by H2O2 as
an electron acceptor [45]. The reaction of xanthine oxidation of uric acid was used for the
determination of xanthine oxidase (XOD) activity. Spectrophotometric measurement was
performed in 0.1 mmol/dm3 phosphate buffer at pH 7.5, at the absorbance at 295 nm [45].

2.8. Serum Biochemical Analyses

The serum activities of aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) were determined in serum samples. Analysis of the serum samples was measured
by an automatic biochemistry analyzer (Beckman Synchron CX4 PRO, Fullerton, CA,
USA) [48].

2.9. Statistical Analyses of Data

The data acquired in the conducted examination were evaluated by one-way analysis
of variance (ANOVA) using the software package Statistica 13. Once the analysis of
variance exhibited statistical significance, Duncan’s MRT was employed. A significant
difference was registered at p < 0.05.

3. Results and Discussion

Results of proximate analysis of compound feed used in daily nutrition of broiler
chickens during the experiment are presented in Table 1.

Table 1. Proximate composition and diet ingredients of compound feed, %.

Nutrients
Treatments

A1—Control A2—Serbia A3—Albania

Dry matter 89.6 89.5 89.6
Moisture 10.4 10.5 10.4

Crude protein 22.0 22.1 22.1
Crude fat 5.1 5.0 5.2

Crude fiber 3.5 3.4 3.5
Crude ash 6.3 6.4 6.2

Ca 1.0 1.1 0.9
P 0.8 0.8 0.8

Metabolizable Energy, MJ/kg * 12.5 12.5 12.5

Diet ingredients
Corn 35.4 35.6 35.5

Wheat 25.0 25.0 25.0
Soybean meal 19.5 19.5 19.5

Sunflower meal 2.0 2.0 2.0
Soy protein isolate 8.8 8.6 8.5

Corn gluten 2.0 2.0 2.0
Yeast 1.5 1.5 1.5

Limestone 1.8 1.8 1.8
Premix 4.0 4.0 4.0

* Values were calculated.

Gained results are conferred in the range of the color properties of grain color prop-
erties of Alternaria. Gained results are conferred in the range of the color properties of
Alternaria spp. contaminated wheat grains [49]. Wheat grain samples were significantly
different (p < 0.05) in terms of all measured color parameters (L*, a*, b*). Control wheat grain
(A1) samples were significantly different in terms of lightness and dominant wavelength,
compared to wheat grain samples (A2) and (A3), which have shown significant difference
(p < 0.05) compared to A1, but without any statistically significant difference (p > 0.05)
between themselves, nevertheless numerical differences (Figure 1), respectively.



Sustainability 2021, 13, 4005 6 of 13

Sustainability 2021, 13, x FOR PEER REVIEW 6 of 14 

Gained results are conferred in the range of the color properties of grain color prop-
erties of Alternaria. Gained results are conferred in the range of the color properties of 
Alternaria spp. contaminated wheat grains [49]. Wheat grain samples were significantly 
different (p < 0.05) in terms of all measured color parameters (L*, a*, b*). Control wheat 
grain (A1) samples were significantly different in terms of lightness and dominant wave-
length, compared to wheat grain samples (A2) and (A3), which have shown significant 
difference (p < 0.05) compared to A1, but without any statistically significant difference (p 
> 0.05) between themselves, nevertheless numerical differences (Figure 1), respectively.

Figure 1. Color parameters of different samples of wheat grains. A1—wheat grain without visual contamination of Alter-
naria spp.; A2—wheat grain with visual contamination of Alternaria spp. (Serbia); A3—wheat grain with visual contamina-
tion of Alternaria spp. (Albania); L*—lightness; a*—red/green value; b*—blue/yellow value. 

The results presented in Figure 1 show that all wheat grain samples belong to the 
different groups by dominant wavelength values. Contemplating all stated, it can be con-
cluded that infection entered the grain in a higher amount in some wheat samples (A2 
and A3). Simultaneously, there were samples without visible infection and color changes 
on the grain (A1). Wheat grain samples without visible dark spots were commonly de-
scribed by higher lightness and more prominent yellow tones [50]. 

All wheat grain samples collected from the field and previously instrumentally ana-
lyzed were disinfected with 0.4% NaOCl and placed for incubation (Section 2.4) for seven 
days. Results of fungi genera confirmation were carried out by microscopic examination, 
and the results have been shown in Table 2. 

Table 2. Incidence of some genera of fungi in wheat grain samples, %. 

Treatment/Sample 
Fungi spp. Other Fungi spp. 

Alternaria Rhizopus Fusarium Not Identified 
A1—Control 25.2 b 72.2 a 1.0 b 1.6
A2—Serbia 37.9 a 48.3 b 3.5 a 10.3

A3—Albania 39.2 a 46.6 b 3.9 a 10.3
p-value 0.023 0.016 0.003

Values in the same row marked with the different letters are significantly different at the significance level of p < 0.05. 

A1

A2

A3

0

10

20

30

40

50

60

L*

a*

b*

0–10      10–20       20–30      30–40       40–50       50–60

Figure 1. Color parameters of different samples of wheat grains. A1—wheat grain without visual contamination of Alternaria
spp.; A2—wheat grain with visual contamination of Alternaria spp. (Serbia); A3—wheat grain with visual contamination of
Alternaria spp. (Albania); L*—lightness; a*—red/green value; b*—blue/yellow value.

The results presented in Figure 1 show that all wheat grain samples belong to the
different groups by dominant wavelength values. Contemplating all stated, it can be
concluded that infection entered the grain in a higher amount in some wheat samples
(A2 and A3). Simultaneously, there were samples without visible infection and color
changes on the grain (A1). Wheat grain samples without visible dark spots were commonly
described by higher lightness and more prominent yellow tones [50].

All wheat grain samples collected from the field and previously instrumentally ana-
lyzed were disinfected with 0.4% NaOCl and placed for incubation (Section 2.4) for seven
days. Results of fungi genera confirmation were carried out by microscopic examination,
and the results have been shown in Table 2.

Table 2. Incidence of some genera of fungi in wheat grain samples, %.

Treatment/Sample
Fungi spp. Other Fungi spp.

Alternaria Rhizopus Fusarium Not Identified

A1—Control 25.2 b 72.2 a 1.0 b 1.6
A2—Serbia 37.9 a 48.3 b 3.5 a 10.3

A3—Albania 39.2 a 46.6 b 3.9 a 10.3
p-value 0.023 0.016 0.003

Values in the same row marked with the different letters are significantly different at the significance level of
p < 0.05.

Classification of field fungi in analyzed wheat grain samples showed that the signif-
icant field fungi were Rhizopus spp., followed by Alternaria spp., and Fusarium spp. The
ratio of contamination of wheat grain samples by Alternaria spp. was the highest in A3
samples without significant difference (p > 0.05) compared to A2, as previously stated.
Differences in percentages between A2 and A3 could be explained by the fact that Alternaria
spp. produce melanin pigments of dark color, which can cause the differentiation in deter-
mination with instrumental measurement, respectively. Due to fungi growth in the field
even at low temperatures, they are also responsible for spoilage of commodities during
refrigerated transport and storage. Several Alternaria species are known producers of toxic
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secondary metabolites known as Alternaria mycotoxins [23]. A. alternata produces several
mycotoxins. TeA is harmful to several animal species, e.g., mice, chickens, and dogs [23].
Many Alternaria metabolites have been reported to occur naturally in cereals [5,12]. Al-
ternariol, alternariol monomethyl ether, and tenuazonic acid were frequently detected
in sorghum, wheat, and edible oils [23]. Xu et al. [51] have reported the importance and
danger of exposure to Alternaria toxins from grain and grain-based products because of
its relation to human esophageal cancer in China. In their study, a total of 370 freshly
harvested wheat grain samples were analyzed for the four Alternaria toxins TeA, TEN,
AOH, and AME. Field contaminated samples (95%) of the wheat grains were positive
for more than one type of Alternaria toxins [51]. Li and Yoshizawa [52] reported the first
report of the natural occurrence of Alternaria mycotoxins in Chinese wheat. Their wheat
grains were significantly infested by Alternaria species, mainly A. alternata, with a median
infection rate of 87.3%. The grains with low quality which is acceptable in some cases was
researched in post-harvest period to investigate if the Alternaria or Fusarium influenced in
adverse quality of the grains [53]. The distribution of Alternaria and Fusarium spp. they
were varied significantly in samples of reduced rate compared with acceptable samples.
The results of Kosiak et al. [53] revealed a negative interaction between F. graminearum and
Alternaria spp. as well as between F. graminearum and another Fusarium spp. Fusarium and
Alternaria fungi naturally occurring on the ears and the formation of their mycotoxins in
the ripe grains. Müller et al. [9] investigated the fluorescent pseudomonads colonizing
wheat ears, which have a high antagonistic potential against phytopathogenic fungi. Un-
fortunately, the results of their findings indicate that extensive biological management of
mycotoxin development by naturally arising pseudomonads with incompatible activity is
very doubtful [9].

Based on the gained results in the second phase of the experiment with the live broiler
chickens, after the first experimental week, it could be noticed that the addition of wheat
infected with Alternaria spp. in the amount of 25% in treatment A2 and A3 expressed
adverse effects. The highest body weight of chickens of 140.40 g was recorded in broilers
on control treatment A1 with statistically significant differences (p < 0.05) compared to
treatments A2 (137.32 g) and A3 (135.35 g).

At the end of the second week of test period, a statistically significant (p < 0.05)
difference in body weight of broiler chickens could be noticed. The highest body weight
of 352.68 g was recorded in control treatment A1, with statistically significant differences
compared to other Alternaria spp. treatments. The lowest body weight of chickens was
recorded in treatment A3 (335.93 g), while significant differences (p > 0.05) between chickens
in Alternaria spp. treatments were not recorded (Table 3). The low broiler chicken body
weight observed in Alternaria spp. contaminated diet than control could be due to Alternaria
spp. toxin tenuazonic acid which was firstly described in 1987 [54].

Table 3. Broiler chickens body weight in the experiment, g.

Age
Treatments in Test Pooled

A1 A2 A3 SE p

0 day 35.52 a ± 2.82 35.38 a ± 2.66 34.97 a ± 2.77 0.16 0.098
7 day 140.40 a ± 9.61 137.32 b ± 8.13 135.35 b ± 8.19 0.47 0.000
14 day 352.68 a ±18.44 341.85 b ± 23.30 335.93 b ± 22.42 1.29 0.000

Values in the same row marked with the different letters are significantly different at the significance level of
p < 0.05.

Numerous researches have registered a broad array of serious wellbeing impacts
and medical indications after food animals was subjected to the elevated amount of tox-
ins. Nevertheless, not a lot is seen concerning the wellbeing impacts of toxins at small
amounts [55]. Kolawole et al. [55] conducted a long-term feeding trial in order to investi-
gate the impact of small amounts of toxin combinations on the production of poultry fed
with naturally contaminated complete feed. Total of eighteen tests with poultry production
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was performed, with closely of 2200 one-day-old Ross-308 birds per each test. As food
animals are frequently subjected to low doses of mycotoxin, a cumulative risk evaluation
in quantifying and alleviating counter to the economic, welfare, and health influences is
necessary for mycotoxins. Hessel-Pras et al. [56] stated that once Alternaria mycotoxins
passes the intestinal barrier, they can reach the liver to exert yet uncharacterized molec-
ular effects. Hence, the same group of authors used hepatic in vitro systems to examine
selected Alternaria mycotoxins for their induction of metabolism-dependent cytotoxicity,
phosphorylation of the histone H2AX surrogate marker for DNA double-strand breaks,
and relevant marker genes for hepatotoxicity. They have found evidence that 50 µmol/L
of AOH, AME, TeA, and TEN might be associated with hepatotoxic effects, necrosis, and
the development of diseases like cholestasis and phospholipidosis [56]. Kemboi et al. [57]
discovered that other developing toxins and metabolites, counting Alternaria, Aspergillus,
Fusarium, Penicillium toxins, were discovered at differing concentrations during their re-
search. Such co-occurrences of mycotoxins could trigger synergistic and additive health
effects, impeding the food animal production sectors worldwide.

Results of feed consumption and feed conversion ratio are shown in Tables 4 and 5.
Alternaria spp. contaminated wheat grain showed some numerical differences between
treatments but without any statistically significant differences in broiler chickens’ life stage
of life.

Table 4. Feed consumption of broiler chickens, g.

Age
Treatments in Test Pooled

A1 A2 A3 SE p

7 day 163.57 a ± 30.51 152.63 a ± 20.01 162.71 a ± 29.50 9.62 0.564
14 day 292.33 a ± 10.16 293.77 a ± 11.66 284.11 a ± 17.03 4.72 0.689

Values in the same row marked with the different letters are significantly different at the significance level of
p < 0.05.

Table 5. The feed conversion ratio of broiler chickens, kg/kg.

Age
Treatments in Test Pooled

A1 A2 A3 SE p

7 day 1.16 a ± 0.21 1.11 a ± 0.15 1.21 a ± 0.22 0.07 0.454
14 day 1.29 a ± 0.09 1.29 a ± 0.07 1.33 a ± 0.08 0.04 0.555

Values in the same row marked with the different letters are significantly different at the significance level of
p < 0.05.

In addition to wheat, corn is the main feed ingredient used in poultry nutrition. As
a wheat grain, the corn can also be naturally infected with mycotoxins, especially with
Alternaria spp. Topi et al. [58] have investigated the presence of Alternaria mycotoxins
in grains from Albania: alternariol, alternariol monomethyl ether, tenuazonic acid, and
tentoxin. They have concluded that the contribution of AOH and AME originating from
wheat was 0–31.7 ng/kg body weight per day. In contrast, the contribution of Alternaria
toxins through maize consumption was significantly lower.

Changes from optimal internal and external conditions lead to stress from a phys-
iological point of view. Between the main stressors in broiler production, nutritional
stressors have a significant role, and within them, the leading role is mycotoxins feed
contamination [34].

The highly probable clarification for the remarked results presented in Table 6 is that
the pathological modifications strengthen free radical processes by promoting catalytic
activities of enzymes engaged in the antioxidative protection, POD, and GR. Still, through
the disease phase, lipolysis from the lipid depots could be increased due to reduced feed
consumption, which is not the case in our research. Moreover, tiredness of the organism
could lead to escalation of free radical processes and higher amounts of lipid peroxides in
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blood. To defend himself, the body initiates its antioxidative safety mechanisms. Decrease
of SOD activity was anticipated and is in accordance with other research [59,60].

Table 6. GSH and LPx content and the activity of POD, SOD, GR, and XOD in blood hemolysates, µmol/g Hb min.

Treatment GSH LPx POD SOD GR XOD

A1 5.1 b ± 0.9 0.3 a ± 0.2 65.2 a ± 4.4 82.6 a ± 6.1 11.3 b ± 5.9 26.3 a ± 3.6
A2 5.8 a ± 0.3 0.3 a ± 0.1 55.1 b ± 7.2 25.5 b ± 3.5 21.1 a ± 7.2 27.5 a ± 2.9
A3 6.2 a ± 1.1 0.4 a ± 0.1 59.3 b ± 3.4 29.1 b ± 8.9 19.8 a ± 9.6 26.7 a ± 4.1

p-value 0.032 0.089 0.038 0.001 0.004 0.341

Values in the same row marked with the different letters are significantly different at the significance level of p < 0.05.

The glutathione has a vital position in reducing the acute toxicity of xenobiotics
and products of lipid peroxidation. A statistically significant decrease of POD activity
compared to the A1 control treatment was expected since POD catalyzes various proton
donors’ oxidation with hydrogen peroxide. Having in mind that mycotoxins are classified
as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins, and that there are to date,
400 mycotoxins identified and the most critical species producing mycotoxins belong to
Aspergillus, Penicillium, Alternaria, and Fusarium genera, Ülger et al. [61] have described their
genotoxic effects on the organism. Uric acid increased accumulation, and reduced excretion
is closely related to the pathogenesis of gout and hyperuricemia. Higher plants produce
different metabolites, which might impede XOD, so disallow the oxidation of hypoxanthine
to xanthine then to uric acid in the purine metabolism. Nevertheless, microorganisms
generate a group of degrading enzymes, which catalyze uric acid degradation to ammonia.
Xanthine oxidoreductase (XOR) has two forms; xanthine oxidase (XOD) and xanthine
dehydrogenase (XDH), both of them catalyze the oxidation of hypoxanthine to xanthines,
then to uric acid in the purine metabolism [62]. Hafez et al. [63] presented an analysis
with the incidence of uric acid in plants and other organisms, especially microorganisms,
in addition to the mechanisms by which plant extracts, metabolites, and enzymes could
reduce uric acid in the blood. Overactivity of both enzymes (XOD and XDH) cause
the accumulation of uric acid in the animal body and form a pathogenesis condition
called gout [64]. Additionally, XOD serves as a valuable biological source of oxygen free
radicals that participate in various damages of animal tissues leading to many pathological
states [65], which could be caused by multiple stress triggers, e.g., mycotoxins [66–68].

Serum biochemical parameters were significantly affected by Alternaria spp. wheat in
both treatments compared to control treatment during the starter dietary phase (Table 7).
Even though the Alternaria spp. contaminated wheat had no significant effect on growth
performance in broiler chicks, it induced the typical clinical signs of hepatic injury, including
increased activities of AST and ALT, during the starter dietary period what is in accordance
with results of other researchers [48,69,70].

Table 7. Aminotransferase (AST) and alanine aminotransferase (ALT) activity in serum of broiler
chickens, U/L.

Treatment AST ALT

A1 182.1 b ± 32.1 1.1 b ± 0.1
A2 268.8 a ± 41.3 1.7 a ± 0.3
A3 271.5 a ± 33.7 1.6 a ± 0.2

p-value 0.075 0.039
Values in the same row marked with the different letters are significantly different at the significance level of
p < 0.05.

Oxidative stress plays an important role in the development of many animal diseases
and it has been shown that have significant implications for the well-being and overall
welfare of nonruminants [71]. Various studies have shown that oxidative stress has a funda-
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mental role in the etiopathogenesis of several acute and chronic diseases which are causally
related to animal welfare [72]. Over the years oxidative stress has been deeply investigated
in human, while in poultry production the data are yet less uneven [73]. Poultry welfare
is fundamental in maintaining correct health and a good level of mental and physical
well-being of the animal [74]. In our study increased content of total glutathione levels in
chicken dietary treatments (5.8 and 6.2 µmol/g Hb min) with addition of blackpoint wheat,
indicates that chickens had increased antioxidant defense. These results are directly related
with the impaired welfare of chickens. Likewise, certain indicators of impaired welfare of
chickens in our expert are increased activity of GR (21.1 and 19.8 µmol/g Hb min), and
decreased activity of SOD (25.5 and 29.1 µmol/g Hb min), respectively. The similar results
were obtained by Brambilla et al. [75] in their research related to influence of oxidative
stress markers reactive oxygen metabolites (ROM) and anti-oxidant power (OXY) in swine
welfare. Stresses in commercial poultry result from many various factors which negatively
impact poultry health, production, and welfare [76]. Oxidative stress is downstream of all
these stresses. Oxidative stress in the cells results from an imbalance between free radical
production and endogenous antioxidant defense [77]. It is well documented that poultry
feed is often contaminated with a wide range of environmental toxicants, bacterial and
fungal toxins, and known to affect the health and welfare of poultry [78]. Mycotoxins usu-
ally generates reactive oxygen species which induces lipid peroxidation, alters the cellular
redox signaling, antioxidant status, and membrane integrity of the cells [79]. Mycotoxins
increase cellular apoptosis and affect poultry health, production, and welfare.

4. Conclusions

Based on the gained results, it can be concluded that identifying field fungi in all
analyzed wheat grain samples showed that the dominant mycotoxigenic fungus was
Rhizopus spp., followed by Alternaria spp., and Fusarium spp. Usage of 25% wheat in
complete feed for broiler chickens in the first 14 days of life has shown adverse effects
reflected on body weight gain without significant influence on feed consumption and
utilization. Concerning oxidative stress, it can be concluded that Alternaria spp. causes
high oxidative stress in chickens at a young age negatively influences production and
overall broiler chicken’s welfare.

Further research on the influence of Alternaria spp. on animal production and geno-
toxicity is still essential.
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5. Puvača, N.; Bursić, V.; Vuković, G.; Budakov, D.; Petrović, A.; Merkuri, J.; Avantaggiato, G.; Cara, M. Ascomycete Fungi

(Alternaria Spp.) Characterization as Major Feed Grains Pathogens. J. Agron. Technol. Eng. Manag. 2020, 3, 499–505.
6. Hillmann, F.; Novohradská, S.; Mattern, D.J.; Forberger, T.; Heinekamp, T.; Westermann, M.; Winckler, T.; Brakhage, A.A. Virulence

Determinants of the Human Pathogenic Fungus A Spergillus Fumigatus Protect against Soil Amoeba Predation: Dictyostelium
Interactions with Aspergillus Fumigatus. Environ. Microbiol. 2015, 17, 2858–2869. [CrossRef] [PubMed]

7. Ferreira, R.B.; Monteiro, S.; Freitas, R.; Santos, C.N.; Chen, Z.; Batista, L.M.; Duarte, J.; Borges, A.; Teixeira, A.R. Fungal Pathogens:
The Battle for Plant Infection. Crit. Rev. Plant Sci. 2006, 25, 505–524. [CrossRef]
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