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Expansins are a group of plant cell wall loosening proteins that play important roles in 

plant growth and development. In this study, we performed the first study on the 

molecular characterization, transcriptional expression and functional properties of two 

wheat expansin genes TaEXPA2 and TaEXPB1. The results indicated that TaEXPA2 and 

TaEXPB1 genes had typical structural features of plant expansin gene family. As a 

member of α-expansins, TaEXPA2 is closely related to rice OsEXPA17 while the β-

expansin member TaEXPB1 has closely phylogenetic relationships with rice OsEXPAB4. 

The genetic transformation to Arabidopsis showed that both TaEXPA2 and TaEXPB1 

were located in cell wall and highly expressed in roots, leaves and seeds. Overexpression 

of TaEXPA2 and TaEXPB1 genes showed similar functions, causing rapid root 

elongation, early bolting, and increases in leaves number, rosette diameter and stems 

length. These results demonstrated that wheat expansin genes TaEXPA1 and TaEXPB2 

can enhance plant growth and development. 
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INTRODUCTION 

Wheat (Triticum aestivum L.) is one of the most important cereal crops worldwide, which 

accounts for about 35% of the world's staple food (PAUX et al., 2008). Wheat also serves as main 

protein source of human food. Hexaploid wheat contains A, B, and D genomes with about 17 Gb 

in genome size, five times larger than that of humans (FELDMAN et al., 2005, PAUX et al., 2008). 

The cell growth is closely related with cell wall, which must withstand the internal turgor 

pressure and also ensure the extension of the cell during cell growth. The expansins are a group 

of plant cell wall loosening proteins that play an important role in cell wall modification, which 

is critical in cell enlargement. Expansins have been found to participate in a variety of 

development processes such as leaf growth (KULUEV et al., 2013; KULUEV et al., 2014), root hair 

initiation and growth (YU et al., 2011; LIU et al., 2018), fruit softening and ripening (PERINI et al., 

2017), and pollen tube growth (COSGROVE et al., 1997; PEZZOTTI et al., 2002). In addition, 

expansins also contribute to nutrient-uptake efficiency (LU et al., 2013) as well as various biotic 

and abiotic stress tolerances (LI et al., 2011; ZHOU et al., 2014; HAN et al., 2019).  

Expansins were firstly found in the study of acid-induced cell wall elongation in cucumber 

hypocotyls, and then identified, isolated and purified from the hypocotyls of cucumber seedlings 

(MCQUEEN-MASON et al., 1992). Subsequently, plenty of studies focused on investigation of 

homologous expansin genes in a series of plants, including oat coleoptiles (LI et al., 1993), rice 

(TAN et al., 2018), cotton fiber (LI et al., 2016), soybean (ZHU et al., 2013), and tobacco (KULUEV 

et al., 2013). Expansin proteins normally contain 200-250 amino acids and correspond to a 

molecular weight of 25-30 kDa (SYNAN et al., 2014). They all have two conserved domains, 

domain I at C- terminal with 120 to 135 amino acid residues and domain II at C- terminus with 

90 to 120 amino acid residues (SYNAN et al., 2014). The domain I, termed glycoside hydrolase-

like family 45 (GH45-like), is considered as an important catalytic domain sharing a high 

homology with the conserved catalytic domain of GH45 family. The domain II contains a series 

of conserved tryptophans, which is generally regarded as a binding region with about 50% 

similarity to Group-II pollen allergen protein (G2A family) (SAMPEDRO et al., 2005). In addition, 

a signal peptide of 20-30 amino acid residues is present at the N-terminus, which is important for 

expansin expression (LI et al., 2003; SAMPEDRO et al., 2005). 

According to the phylogenetic analysis, superfamily of plant expansin can be divided into 

four subfamilies: α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA) and 

expansin-like B (EXLB) (KENDE et al., 2004). The α-expansin is mainly found in dicotyledonous 

and the family poaceae of monocotyledonous plants, while β-expansin is predominantly present 

in other monocotyledonous plants. Studies showed that the α-expansin and β-expansin gene 

subfamilies already existed before the disorganization of vascular plants and bryophytes, and the 

recent ancestral era of expansin-like A and expansin-like B subfamily can be traced back to 

gymnosperms and angiosperms (LI et al., 2002; SCHIPPER et al., 2002). A lot of evidence 

indicated that EXPA and EXPB proteins are required for cell expansion and biological processes 

involving cell wall modification (DAL et al., 2013). Interestingly, both EXLA and EXLB have 

two typical domains of expansin proteins, but few experimental reports showed the cell 

relaxation activity of these two family members, therefore their functions are still not clear 

(SAMPEDRO et al., 2005; DAL et al., 2013). 

Considerable work indicated that the expression of expansin genes has obvious tissue 

specificity. In soybean, the expansin gene GmEXP1 specifically expressed in the roots (LEE et 
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al., 2003). Through in situ mRNA hybridization and immunohistochemical analysis, rice 

expansin genes showed high expression levels in the growing internodal epidermis, 

differentiating vascular bundles of internodes, lateral root primordia and emerging leaf primordia 

(CHO et al., 2010). In wheat, the transcript of TaExpA6 was found in the pericarp during early 

growth in grain development and, subsequently, in both endosperm and pericarp (LIZANA et al., 

2010). Meanwhile, the expression of expansin genes were affected by various environmental 

stresses such as oxidative stress (CHEN et al., 2018), cold stress (ZHANG et al., 2018), salinity 

stress (CHEN et al., 2017), drought stress (CHEN et al., 2016) and cadmium toxicity stress (REN et 

al., 2017). 

 Recent reports have showed that at least 30 α-expansins and 65 β-expansins were present in 

wheat genome (ZHAO et al., 2016; CHEN et al., 2016). Until now, functional studies have 

revealed that wheat expansins are closely associated with grain size and weight (LIZANA et al., 

2010; KUMAR et al., 2017), male gametophyte development (JIN et al., 2006), phosphorus 

absorption efficiency (HAN et al., 2014) and various abiotic stress tolerance (ZHAO et al., 2012; 

CHEN et al., 2018; REN et al., 2018). Wheat expansin genes TaEXPA2 has been reported to 

improve seed production and tolerance in Cd toxicity (REN et al., 2018), salt stress (CHEN et al., 

2017) and drought stress (CHEN et al., 2016), while poor functional studies is performed on 

wheat expansin genes TaEXPA2. In the current study, to discover functional properties of 

TaEXPA2 and TaEXPB1 genes in plant growth and development, we performed the study on the 

molecular characterization, transcriptional expression and functional properties of two wheat 

expansin genes TaEXPA2 and TaEXPB1. Our results expand our knowledge of wheat expansins 

and provide new evidence for further understanding the structure and more functions of plant 

expansin gene family. 

 

MATERIALS AND METHODS 

Plant materials and seedling culture  

Common wheat (Triticum aestivum L., AABBDD, 2n=6x=42) Chinese Spring (CS) was used 

as material. The seeds with similar size were surface-sterilized with 70% ethanol and 10% 

sodium hypochlorite and germinated on the wet sterile filter paper in sterilized Petri dishes for 48 

h at room temperature. Following germination, seedlings were spread out in buckets to conduct 

hydroponic cultures under the condition of 16/8 h light/dark cycle, 20ºC temperature and 70% 

relative humidity. Hoagland nutrient solution (at a 1/2 dilution) was renewed every 3 d. At two-

leaf stage, all tissues of seedling were harvested and frozen in liquid nitrogen prior to use. 

 

Sequences retrieval and identification of wheat expansins 

   A total of 13 expansin sequences from Arabidopsis and rice were firstly obtained from 

EXPANSIN CENTRAL website (http://www.personal.psu.edu/fsl/ExpCentral/), then these 

sequences were used for BLAST searches in the rice, common wheat, and Arabidopsis proteome 

database in Phytozome v12.1 (https://phytozome.jgi. doe.gov/pz/portal.html) and NCBI 

(https://www.ncbi.nlm.nih.gov/). The online tools Pfam (http://pfam.xfam.org/) and SMART 

(http://smart.embl-heidelberg.de/) were used to screen expansin proteins. Those with only one of 

two domains or without a complete open reading frame were removed. 

BLASTp tool was used to search for homologs of wheat expansin proteins in Arabidopsis 

thaliana and Oryza sativa genome database, Phytozome v9.0 (http://www.phytozome.net). 

Multiple sequence alignments of homogeneous protein sequences were performed using 

http://www.personal.psu.edu/fsl/ExpCentral/
https://www.ncbi.nlm.nih.gov/
http://pfam.xfam.org/
http://smart.embl-heidelberg.de/
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COBALT (https://www.ncbi.nlm.nih.gov/ tools/cobalt/), and phylogenetic tree was constructed 

using the MEGA5.0 software with Maximum likelihood method (ML) analysis (TAMURA et al., 

2011). 

 

mRNA extraction, cDNA synthesis and qRT-PCR 

Total RNA was extracted using TRIZOL Reagent (Invitrogen) according to the 

manufacturer’s instructions. Genomic DNA was removed by digesting each sample (20-50 μg of 

total RNA) with DNase I (Promega). Then reverse transcription reactions were performed with 

the PrimeScript® RT Reagent Kit with gDNA Eraser (TaKaRa, Shiga, Japan) according to the 

manufacturer's instructions. Gene-specific primers were designed using online Primer3Plus 

(http://www.primer3plus.com/) according to UNTERGASSER et al., (2012). ADP-ribosylation 

factor gene was used as reference for normalization. Quantitative real-time polymerase chain 

reaction (qRT-PCR) was performed in 20 μL volumes containing 10μL 2.5 × RealMaster Mix/20 

× SYBR solution, 2 μL cDNA, 0.5 μL of each gene-specific primer and 8 μL ddH2O. PCR 

conditions were: 95°C for 3 min, 39 cycles of20 s at 95°C, 58°C for 15 s and 72°C for 20 s, a 

melt curve of 65°C to 95°C. Reactions were conducted on a CFX96Real-time PCR Detection 

System (Bio-Rad). All data were analyzed with CFX Manager Software (Bio-Rad) (ANDREAS et 

al., 2007). 

 

Molecular cloning, plasmid construction, Arabidopsis transformation and identification 

The full-length of TaEXPA2 and TaEXPB1 genes were cloned by PCR using wheat seed 

cDNA as template, and then recombined into pUC18 vector for sequencing. The specific-primer 

sequences designed were: CE-TaEXPA2-F: 5’-ggatcttccagagatATGG 

AGACGAGACGTCCAGCGGTTTCC-3’, CE-TaEXPA2-R: 5’-ctgccgttcgacgatTCCA 

TCCGTCTTGTATTACAGGTC-3’ and CE-TaEXPB1-F: 5’-ggatcttccagagatATGGCT 

CCTCTTTCGTC-3’, CE-TaEXPB1-R: 5’-ctgccgttcgacgatTCAGCTGTACTGGACG AT-3’. 

DNA polymerase KOD-Plus-Neo was purchased from TOYOBO (Japan). PCR reaction in a 20 

µL volume with cDNA, dNTPs and buffer was performed in a S1000TM thermal cycler (Bio-

Rad, USA) with the following program: an initial step of 94ºC for 5 min, 34 cycles of 94ºC for 1 

min, 62ºC for 45 s and 72ºC for 1 min 30 s, and a final step of 10 min at 72ºC. Five recombined 

DNA clones for each gene were sequenced by Sangong Company (Shanghai) to avoid possible 

errors.  

Arabidopsis thaliana Col-0 ecotype seeds were surface-sterilized with 75% ethanol for 1 

min, followed by 10% NaClO for 10 min, and then washed with sterile distilled water at least 5 

times. After stratification at 4°C in dark for 3 days, the seeds were germinated and grown on 

Murashige and Skoog (MS) medium at 22°C with 16 h light/8 h dark cycle. After one week, the 

seedlings were transferred to vermiculite for following transformation assays. The full length 

cDNA fragments without stop codon were amplified by PCR using specific primers (Table S3). 

The coding sequence (CDS) fragments were recombined into pCAMBIA1302 vector to construct 

35S::EXPA2:GFP and 35S::EXPB1:GFP. The recombined plasmids were transformed into 

Arabidopsis Col-0 ecotype using floral dip method (ZHANG et al., 2006) and transgenic lines 

were obtained by screening progeny for hygromycin resistance. Seeds of first-generation 

transgenic lines from transformed plants were germinated on 1/2 MS medium containing 100 

mg/L kanamycin to select for the positive seedlings. Transgenic lines were obtained from each 

transformation after performing at least two generations of resistance screening. 

https://www.ncbi.nlm.nih.gov/%20tools/cobalt/
http://www.primer3plus.com/
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 The stable transgenic Arabidopsis plants with overexpression of TaEXPA2 and TaEXPB1 

were further confirmed by PCR with genomic DNA as template. The transcriptional level of the 

transgenes was detected by qRT-PCR with cDNA of leaves, roots (20, 30, 40 and 50 day) and 

seeds (seed-green, seed-yellow, seed-brown and seed-maturity) as template. 

 

Subcellular location 

To analysis the location of TaEXPA2 and TaEXPB1 proteins in plant cell, we performed a 

detection of green fluorescent protein (GFP) signal from transgenic plants. Seeds of the 

homozygous transgenic lines were surface-sterilized with 75% ethanol and 10% NaClO, and 

then placed at 4°C in dark for 3 days. Following stratification, the seeds were germinated and 

grown on MS medium at 22°C with 16 h light/8 h dark cycle. After one week, the roots of 

transgenic seedlings were cut and observed by using Zeiss LSM 780 fluorescence confocal 

microscopy. 

 

Observation of growth and development of transgenic plants 

For observing the growth and development of transgenic Arabidopsis plants, wild-type 

(WT) and transgenic Arabidopsis seeds were both germinated on MS medium, and then 

cultivated the 14-day-old seedlings under strictly same growth conditions. In the process of 

growth, bolting time and phenotypic characters including principal root length, average leaf 

number, rosette diameter, and stem height in both WT and transgenic plants were measured. 

Each measurement was performed with thirty plants to minimize experimental errors. 

 

RESULTS  

Molecular characterization of wheat TaEXPA2 and TaEXPB1 genes 

Through BLASTp online tool, we found that wheat TaEXPA2 (AAS48871) and TaEXPB1 

(AAT99292) genes had typical structural characterization of plant expansin gene family. 

TaEXPA2 consisted of 777 bp encoding 258 amino acid residues with deduced molecular mass 

27.8 kDa and isoelectric point 8.10. TaEXPB1 contained 795 bp encoding 265 amino acid 

residues and the deduced molecular mass was 28.7 kDa with isoelectric point 4.90 (Fig. S1 and 

Fig. S2). The multiple sequence alignment of expansin proteins from wheat (TaEXPA2 and 

TaEXPB1), Arabidopsis (ATEXA1, ATEXPB2), rice (OsEXPA4, OsEXPB17) and Maize 

(ZmEXPA1, ZmEXPB1)  showed that wheat expansins had similar structural features with those 

from Arabidopsis and rice (Fig. 1A). Same to the previously characterized expansin genes (LU et 

al., 2016), both TaEXPA2 and TaEXPB1 shared three distinct domains: one short signal peptide, 

one DPBB_1 domain and one pollen_allerg_1 domain. In addition, the α-insertion was present in 

the TaEXPA2 in front of conserved His-Phe-Asp (HFD) motif with five conserved amino acids 

WCNPP. The β-insertion was found in TaEXPB1 behind conserved HDF motif with only one 

conserved amino acid glycine (Fig. 1A). 

Phylogenetic tree of 16 expansin proteins from different plant species was constructed, 

including two from wheat (TaEXPA2 and TaEXPB1), eight from Arabidopsis (ATEXPA7, 

ATEXPA18, ATEXPB1, ATEXPB2, ATEXPB3, ATEXPB4, ATEXPB5, and ATEXPB6), and 

six from rice (OsEXPA17, OsEXPB2, OsEXPB4, OsEXPB5, OsEXPB10, and OsEXPB16). The 

results revealed that TaEXPA2 was closely related to rice OsEXPA17, and TaEXPB1 showed a 

close relationship with rice OsEXPAB4 (Fig. 1B). 
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Fig. 1. Sequence alignment and phylogenetic analysis of wheat expansins TaEXPA2 and TaEXPB1 and 

other 14 expansin members from rice and Arabidopsis. (A) Alignments of the essential domains 

signal peptide, DPBB_1 and pollen_allerg_1 domain present in plant expansin proteins. The α-

insertion and β-insertion were labeled with bold overlining, and conserved domains and amino 

acids were marked with grey boxes. (B) Phylogenetic relationships between TaEXPA2 and 

TaEXPB1 proteins and the related expansin proteins from rice and Arabidopsis. Numbers on the 

main branches indicate boot strap percentages for 1,000 replicates. 

 

Expression of TaEXPA2 and TaEXPB1 genes in different wheat tissues and organs 

qRT-PCR was used to detect the expression profiles of TaEXPA2 and TaEXPB1 in different 

wheat tissues and organs, including seed, leaf, and root (Fig. 2). Specific primers for TaEXPA2 

and TaEXPB1 genes were designed and listed in Table S3. The results showed that TaEXPA2 

had an abundant expression in wheat seeds, and a lower expressional level in both leaves and 
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roots (Fig. 2A). TaEXPB1 had a high expression level in both seeds and leaves and a lower 

expression level in roots (Fig. 2B). 

 
Fig. 2. Transcriptional expression profiles of TaEXPA2 and TaEXPB1 genes in different wheat tissues and 

organs. (A) Expression of TaEXPA2 in seed, leaf and root of wheat. (B) Expression of TaEXPB1 in 

seed, leaf and root of wheat. Error bars indicate standard errors of three biological replicates. 

 

Genetic transformation and identification of TaEXPA2 and TaEXPB1 genes  

To analyze function of TaEXPA2 and TaEXPB1 in plant growth and development, the 

overexpressed transgenic lines OE-TaEXPA2 and OE-TaEXPB1 were obtained by hygromycin 

screen and genomic PCR confirmation (Fig. 3A). Then, we conducted an observation on the 

roots of transgenic seedlings by using Zeiss LSM 780 fluorescence confocal microscopy to 

perform the subcellular location of TaEXPA2 and TaEXPB1 proteins. The result showed that the 

GFP signals of the fusion proteins of both TaEXPA2 and TaEXPB1 located in cell wall (Fig. 

3B). 

 

 
Fig. 3. PCR identification and subcellular location of Arabidopsis transgenic lines OE-TaEXPA2 and OE-

TaEXPB1.  (A) The genomic PCR identification of transgenic Arabidopsis. (B) The GFP signals of 

fusion proteins detected by Fluorescence scanning in transgenic plants.  
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Transcriptional expression profiling of TaEXPA2 and TaEXPB1 in wild type and transgenic 

Arabidopsis seedling 

qRT-PCR was used to detect the transcriptional expression profiling of TaEXPA2 and 

TaEXPB1 genes at different tissues/organs and growth stages of wild type and transgenic 

Arabidopsis plants (Fig. 4). The results showed that TaEXPA2 had a continually high 

expressional level in both leaves and roots at 20, 30, 40 and 50 days. Interestingly, the 

expression of TaEXPA2 gradually increased along with seed development, and reached to a high 

level in mature seeds (Fig 4A). TaEXPB1 displayed a high expression at 20 d and 50 d of leaves, 

but with a very low expression level at 30d and 40d in leaves. During the development of root, 

TaEXPB1 highly expressed at 20 d, but had a low expression level at 30 d and almost no 

expression at 40 d. In addition, TaEXPB1 also showed a high expression in mature seeds 

whereas almost no expression occurred in the developing yellow and brown seeds (Fig. 4B). 

 

 
Fig. 4. Transcriptional expression profiles of TaEXPA2 and TaEXPB1 in the different organs and 

developmental stages of wild type and Arabidopsis transgenic plants detected by qRT-PCR. A. OE-

TaEXPA2 (A2); B. OE-TaEXPB1 (B1). WT, wild type. Error bars indicate standard errors of three 

biological replicates. Statistically significant differences between wild type and transgenic plant 

were calculated by independent Student’s T-tests: *p < 0.05; ** p < 0.01. 

 

 

Comparison of wild type and Arabidopsis transgenic plants 

The growth and development features of the wild type and transgenic lines were observed to 

estimate the biological function of TaEXPA2 and TaEXPB1 genes, including bolting time, 

principal root length, average leaf number, rosette diameter, and stem height (Fig. 5, Table 1). 

We found that the phenotypic characters of the transgenic lines OE-TaEXPA2 and OE-

TaEXPB1 were similar, and the growth and development of both lines were significantly 
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enhanced at all stages. Compared with wild type, the seedlings at 14 d in both transgenic lines 

showed much longer principle roots, and at 20 d, the rosette diameter of OE-TaEXPA2 and OE-

TaEXPB1 was 0.7 and 0.9 cm longer than wild type, respectively. At 30 d, the rosette diameter 

between wild type and transgenic plants maintained a clear difference of 0.7 cm, and slight 

difference in average leaf number. The difference of the rosette diameter at 35 d between wild 

type and transgenic plants increased from 0.7 cm to 1.4 cm, and OE-TaEXPA2 and OE-

TaEXPB1 lines had two and three leaves more than wild type plants, respectively. Meanwhile, 

the stem high of OE-TaEXPA2 and OE-TaEXPB1 plants was 1.8 and 1.4 times higher than that 

of wild type plants, respectively (Table 1). At 40 d, the difference in average leaf number 

between OE-TaEXPA2 and OE-TaEXPB1 was still significant, but the gap of the rosette 

diameter between wild type and transgenic plants was decreased to 0.2 cm. In addition, the stem 

height of both transgenic lines was approximately two times longer than the wild type. At 

maturity stage, the stem height of OE-TaEXPA2 and OE-TaEXPB1 plants was respectively 3.7 

cm and 1.2 cm higher than the wild type. Notably, the bolting time of OE-TaEXPA2 and OE-

TaEXPB1 was significantly expedited with 4 and 3 days faster than wild type plants (Table 1). 

 

 
 

Fig. 5. Comparison of WT, TaEXPB1 and TaEXPA2 Arabidopsis transgenic plants at different growth and 

development stages. WT, wild type; A2, OE-TaEXPA2; B1, OE-TaEXPB1. Statistically significant 

differences between wild type and transgenic plant were calculated by independent Student’s T-

tests: *p < 0.05; ** p < 0.01. 
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Table 1. Comparison of plant growth and developmental characters between wild type (WT) and the 

transgenic Arabidopsis lines OE-TaEXPA2 and OE-TaEXPB1. 

*p < 0.05, **p < 0.01. 

 

DISCUSSION 

Plant cells enclosed themselves within a complex polysaccharide wall, which represents a 

critical determinant in plant architecture and is of fundamental importance in plant growth and 

development (COSGROVE, 2005). Expansins have their unique ability with inducing immediately 

cell wall extension in vitro and cell expansion in vivo. In this study, we performed a sequence 

alignment and phylogenic analysis and found that wheat expansin genes TaEXPA2 and 

TaEXPB1 showed high similarity and closely phylogenetic relationships with rice expansin 

genes OsEXPA17 (NC_029261) and OsEXPB4 (NC_029265), respectively. Both OsEXPA17 and 

OsEXPB4 were found to be closely associated with plant growth and development (LEE et al., 

2001; YU et al., 2011). Thus, we speculate that TaEXPA2 and TaEXPB1 might have similar 

biological function with OsEXPA17 and OsEXPB4.  

The overexpression of TaEXPA2 and TaEXPB1 in Arabidopsis caused pleiotropic 

morphological changes, including rapid root elongation, leaf and plant growth, corresponding to 

their high transcriptional expression levels at cell wall of both roots and leaves, particularly at 

the early stages of plant growth. Similar results were also obtained in the previous study in which 

high expression level of soybean expansin gene GmEXP1 occurred in the seedling roots and 

further ectopic expression of GmEXP1 in tobacco (Nicotiana tabacum) seedlings caused the 

acceleration in the root growth (LEE et al., 2003).  

Early study showed that local transient induction of expansin expression on the flank of 

developing primordia leads to the induction of the entire process of leaf development (PIEN et al., 

2001). Both OE-TaEXPA2 and OE-TaEXPB1 transgenic lines had more leaves than wild type 

plants, which might be caused by bulging of the apical meristem induced by overaccumulation of 

expansin proteins (CHOI et al., 2003). Our results also showed that the overexpression of two 

wheat expansin genes led to significant increase in rosette diameters, suggesting a role of 

Growth 

Stages 
(days) 

Genotypes 

Length of 

pricinple 
root (cm) 

Average 

number  
of leaves 

Rosette  

diameter 
(cm) 

Stem  

length 
(cm) 

Bolting  

time 
(days) 

14 

 

 
20 

WT 

OE-TaEXPA2 

OE-TaEXPB1 
WT 

3.13±0.15 

4.24±0.16** 

3.71±0.11** 

 

 

 
8.11±0.13 

 

 

 
2.01±0.01 

 

 

 OE-TaEXPA2  8.08±0.11 2.89±0.02**   

 OE-TaEXPB1  9.02±0.13* 2.7±0.02**   
30 WT  12.02±0.07 3.9±0.03   

 OE-TaEXPA2  12.01±0.05 4.62±0.09*   

 OE-TaEXPB1  13.01±0.11* 4.61±0.08*   
35 WT  16.02±0.12 6.21±0.09 0.81±0.02  

 OE-TaEXPA2  19.01±0.11** 7.61±0.08** 2.22±0.02**  
 OE-TaEXPB1  18.02±0.12** 7.61±0.07** 1.91±0.01**  

40 WT  18.03±0.11 7.22±0.08 4.21±0.05  

 OE-TaEXPA2  21.01±0.13** 7.71±0.10* 8.52±0.13**  
 OE-TaEXPB1  20.01±0.12** 7.42±0.11 8.52±0.12**  

Maturity WT  - - 28.41±0.21 36.01±0.23 

 OE-TaEXPA2  - - 32.11±0.23** 32.11±0.21** 
 OE-TaEXPB1  - - 29.32±0.18** 33.02±0.18** 
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TaEXPA2 and TaEXPB1 in the induction of leaf formation and development. The most striking 

observation of the transgenic plants overexpressing TaEXPA2 or TaEXPB1 genes exhibited a 

rapid stem elongation and significant increase in plant height, consistent with the previous 

studies in rice and aspen (CHOI et al., 2003; GRAY-MITSUMUNE et al., 2008). Therefore, the 

overaccumulation of TaEXPA2 and TaEXPB1 proteins could promote cell growth by loosening 

the cell wall, resulting in the acceleration of plant growth and development in the transgenic 

plants.  

CONCLUSION 

Wheat expansin genes TaEXPA2 and TaEXPB1 showed a high sequence similarity and 

typical structural features with those from Arabidopsis and rice, which were closely related to 

rice OsEXPA17 and OsEXPAB4, respectively. Genetic transformation to Arabidopsis showed 

that both genes were located in cell wall and had a high expression level in roots, leaves and 

seeds. Overexpression of TaEXPA2 and TaEXPB1 showed a similar function and led to early 

bolting, rapid root elongation and increases in leaves number, rosette diameter and stems length 

in Arabidopsis. The results demonstrated that wheat expansin genes TaEXPA1 and TaEXPB2 

could enhance plant growth and development. 
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Izvod 

Ekspansini su grupa biljnih proteina, koji se nalaze u ćelijskom zidu i imaju važne uloge u rastu i 

razviću biljke.  U ovom radu, urađeno je prvo proučavanje molekularne karakterizacije, 

transkripcione ekspresije i funkcionalnih osobina dva ekspanzin gena pšenice TaEXPA2 i 

TaEXPB1. Rezultati su pokazali da oba gena imaju tipične strukturne karakteristike familije 

ekspanzin gena kod biljaka. Kao član  α -ekspanzina, TaEKSPA2 je blisko povezan sa genom  

OsEKSPA17 pirinča,  dok je β-ekspanzijski član TaEKSPB1 blisko filogenetski povezan 

OsEKSPAB4 pirinča. Genetska transformacija kod Arabidopsis-a pokazala je da su i TaEKSPA2 

i TaEKSPB1 locirani u ćelijskom zidu i visoko izraženi u korenu, lišću i semenu. Prekomerna 

ekspresija gena TaEKSPA2 i TaEKSPB1 pokazala je slične funkcije, uzrokujući brzo izduživanje 

korena, rani porast i povećanje broja listova, prečnika rozete i dužine stabljika. Ovi rezultati su 

pokazali da geni ekspanzini pšenice TaEKSPA1 i TaEKSPB2 mogu poboljšati rast i razvoj 

biljaka. 
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