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Abstract 

The influence of the mechanical activation of ZnO nanoparticle fillers on the structural and electrical properties 

of the matrix of poly(vinylidenefluoride)-ZnO (PVDF-ZnO) films was investigated. Transmission electron 

microscopy and scanning electron microscopy analyses showed that mechanical activation in a high energy 

planetary ball mill reduces the size of ZnO particles. X-ray diffraction and Raman spectroscopy revealed that 

PVDF crystallized predominantly as the -phase. Non-activated ZnO filler reduces the degree of the crystallinity 

of the matrix and promotes crystallization of α-phase of PVDF in the film, while the fillers activated for 5 and 

10 min induce crystallization of -phase, indicating that mechanical activation of the filler can be used as a 

general method for fabrication of PVDF composites with increased content of piezoelectric -phase crystals. 

Dielectric spectroscopy measurements show that polymer composite with the high content of -phase (with ZnO 

filler activated for 5 min) exhibits the highest value of dielectric permittivity in 150-400 K range of 

temperatures. Kinetic analysis shows combined effects of increased surface area and increased concentration of 

surface defects on the interactions between polymer chains and activated nanoparticles. 

 

Keywords: polymer composites; mechanical activation; crystallization; dielectric properties; PVDF; ZnO
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Introduction 

Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer with excellent pyro-and piezo-electric properties 

[1,2]. Compared to piezoelectric ceramics, PVDF has lower dielectric permittivity but offers certain advantages 

for sensing applications due to low density, flexibility and toughness. Also, being an engineering plastic, it can 

easily be processed into technologically useful forms [3,4]. For this reason, polyvinylidene fluoride (PVDF) has 

been widely used in MEMS technology as well as for ultrasound transducer and medical ultrasound 

applications. PVDF may crystallize in five distinct crystalline phases, usually denoted as , , ,  and  [5,6]. 

The most common -phase, typically formed during the crystallization from melt, is characterized by alternating 

s-trans and s-gauche bonds (TGTG), hence it is non-polar. Both  and  phases are electroactive, but -phase 

exhibits the strongest ferroelectric response due to a particular crystal structure, with all C-C bonds in the trans 

conformation (TTTT) [6,7]. Therefore, considerable research effort has been devoted to optimization of the 

conditions that will induce -phase crystallization in PVDF films [8-13]. 

One of the methods suggested was mixing of PVDF with nanostructured fillers (montmorillonite, SiO2 

etc.), which would act as nucleation centres for crystallization of the -phase [12,13]. Addition of carbon 

nanofibers was found to have a considerable impact on phase composition and crystallization of the -phase 

[14]. It was also found that the combination of two fillers (multi-walled carbon nanotubes and polypyrrole) may 

exhibit a synergistic effect on the hybrid system's electrical properties, due to specific changes in morphology 

[15-17]. In addition, the application of a stretching process resulted in crystallization of almost pure -phase 

(>96%) in both PVDF and PVDF-carbon nanofiber composites [18]. Given that the combination of dielectric 

fillers and PVDF matrix has been shown to be a good route towards increasing the dielectric permittivity of the 

material, the introduction of high-dielectric permittivity fillers such as barium titanate, BaTiO3, represented a 

next logical step [19-23]. However, it was shown that high BaTiO3 contents (20-40%) are necessary to achieve a 

significant increase in dielectric permittivity [24], while the particles tend to agglomerate in the low surface 

energy polymer matrix, which can reduce the dielectric strength by triggering percolation effects. In order to 

improve the dispersion of the BaTiO3 particles in the PVDF matrix, and consequently improve the dielectric 

strength, their surface can be modified with pentafluorobenzylphosphonic acid [20] or fluoroalkylsilane [25]. 

The observed increase in the values of dielectric permittivity of the composites was mainly due to the 

contribution of the filler, however, these studies do not report on the effect of ceramic nanoparticles on the 

crystallization of different phases in the PVDF.  

ZnO is semiconductor with wide direct band gap (3.37eV) and large excitation binding energy at room 

temperature and finds applications as a material for gas sensors, solar cells, display screens, photocell electrodes 

and UV-light emitting diodes [26-30]. Nanostructured ZnO [31] has been considered as a good filler material for 

the fabrication of polymer nanocomposites, due to high dielectric permittivity and good physical properties. 

Recent studies report that the mixing of ZnO nanoparticles with PVDF may result in interesting optical and 

electrical properties of the obtained nanocomposite films [32, 33]. However, in spite of improved properties of 

the films after the introduction of the filler, ZnO nanoparticles have not induced changes in phase crystallization 

(i.e. post-crystallization phase composition) of PVDF matrix. Another approach suggested was to use PVDF co-

polymers such as poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as a matrix for ZnO nanoparticles 

[34, 35]. The presence of the trifluoroethylene co-monomers in the macromolecular chains favours -phase 
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crystallization of PVDF monomers and the ZnO will additionally improve the piezoelectric properties of the 

films [36]. 

In our previous studies [37, 38], it was shown that mechanical activation of BaTiO3 filler particles prior 

to mixing with PVDF may favour -phase crystallization in the matrix. Mechanical activation was used to 

reduce the size of BaTiO3 particles, without affecting their ferroelectric tetragonal crystal structure [39]. In this 

way, the filler could increase the dielectric permittivity due to its higher dielectric permittivity, and through 

pronounced crystallization of polar -phase crystals, achieving the same effect on the dielectric permittivity 

using lower concentrations of the filler. Unlike in the case of nanostructured organosilicate fillers [12, 13], 

reduction of the size of the ceramic particles prior to their mixing with PVDF does not necessarily lead to a 

significant increase in dielectric permittivity of the composite, suggesting that the small size of ceramic particles 

of the filler is not the sole necessary condition for the -phase crystallization of the PVDF [23]. In addition to 

the small diameter of BaTiO3 particles, their active surfaces play a crucial role in the nucleation processes that 

result in formation of -phase crystals [37, 38]. Here we conducted a study with another type of particles, zinc 

oxide (ZnO), to investigate whether mechanical activation can be used as a general method for the surface 

modification of the filler that may induce crystallization of -phase upon its mixing with PVDF. In addition, the 

effect of mechanical activation of the filler on dielectric properties of the composites will be investigated. 

 

Experimental 

Poly(vinylidene fluoride) (Mw ~ 530 000) and ZnO powder (99.9% p.a.) were purchased from Sigma Aldrich 

and used without further purification. ZnO powder was mechanically activated for 5 and 10 minutes in a Fritch 

Pulverissete 5 high energy planetary ball mill with wolfram carbide ball. Ball to sample mass ratio was 40:1, 

rotation speed 390 rpm. PVDF solution (2wt.%) was prepared by dissolving 3 g of polymer in 150 ml 

dimethyleformamide (DMF). Non-activated and mechanically activated ZnO powders (0.1 g) were dispersed in 

50 ml DMF and sonicated in a BransonW-450 D Digital Sonifier for 20 min at 20% amplitude (80 W). After 

that, 18.75 ml of ZnO dispersions were mixed with 30 ml of the 2wt.% PVDF solutions. PVDF and 

nanocomposite films (50 µm) were obtained by casting the solutions into Petri dishes. 

Morphology of ZnO powders and PVDF-ZnO nanocomposite films was investigated by a transmission electron 

microscope (JEOL 100CX II instrument) at 100 kV and electron scanning electron microscope (JEOL JSM-

6390) at 10 kV. For TEM measurements ZnO powders were dispersed in alcohol and deposited on the carbon 

coated copper grid mash. For SEM analyses, PVDF-ZnO nanocomposite films were fractured after immersion 

in liquid nitrogen and covered with gold. X-ray diffraction patterns of the composites were obtained on a Philips 

PW-1050 diffractometer with Cu-Kα radiation and a step/time scan mode of 0.05 °/s, in Bragg-Brentano 

geometry. Notation of the samples and preparation conditions are given in Table I in the text.  

Raman scattering measurements were performed on a fully automated Raman microscope (Horiba 

JobinYvon Lab Ram ARAMIS) using He–Ne laser at 633 nm. The samples were measured under a microscope 

using a 100× objective. The data were collected over the Raman shift range of 200–3200 cm−1, using a count 

time of 5 s with 5 averaging cycles and 1800 lines/mm grating. 

Dielectric spectroscopy measurements were performed in a shielded cell, with circular electrodes (D = 

13 mm). Samples in the form of discs (thickness d = 0.03mm) were cut from the middle of the sheets. 

Conductance (G) and susceptance (B) were measured as the real part, G, and the imaginary part, B, of AC 
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conductivity, using the Cp mode of the instrument (Y = G + iB). The measurements were performed on a Hameg 

8118 instrument in the frequency range from 60 Hz to 60 kHz and in the temperature range from 150 to 400 K 

using Temperature Controller Lake Shore 340. The heating rate and the acquisition step were 2 K min-1 and 10 

K, respectively, while the applied voltage was 1.5 V. The characteristic dielectric parameters were calculated 

using the following relations: tan δ = G/B and B = 2πfC, where f is frequency and C is the capacity. In addition, 

C = ε’ε0S/d, where S/d describes the geometry of the samples (S = πD2/4), ε’ is the real part of dielectric 

permittivity and ε0 is the vacuum permittivity. 

Fourier transform infrared (FTIR) spectroscopy was conducted using KBr pellets in 500-4000 cm−1 region with 

Nicolet 6700 FTIR spectrometer (Thermo Scientific, USA). 

 

Results and discussion  

 

Figure 1. TEM micrographs of a) non-activated ZnO powder, b) ZnO powder mechanically activated for 10 
minutes (both images). 
 
Mechanical activation of ZnO powder is expected to cause a decrease in particle size [40] and an increase in 

mesopore volume and non-monotonic trends of specific surface area with prolonged milling, caused by powder 

particle adhesion and breakage due to mechanical activation [41]. TEM micrographs of non-activated and 

mechanically activated (30 min) ZnO powders are shown in Figure 1. Non-activated ZnO powder consists 

mostly of particles of regular rectangular or hexagonal shape, which is consistent with hexagonal ZnO phase 

(Figure 1a). Mechanically activated sample shows irregularly shaped particles where smaller particles exhibit, 

most likely due to highly activated surfaces, a tendency to agglomerate around larger particles (Figure 1b).   

 

Table I. Notation of the samples, preparation conditions and the average crystal sizes and microstrain of the 
filler powders. Complete Rietveld refinement is shown in Figure 3. 

Sample  wt.% ZnO powder Mechanical 
activation time

Average crystallite 
size of ZnO (nm)

Microstrain 
(%) 

PVDF  0  / / / 
P5Z0  5  0 61±4 0.53±0.02 
P5Z5  5  5 49±3 0.74±0.02 
P5Z10  5  10 44±3 0.93±0.02 

 

Rietveld analysis of XRD spectra (presented below) showed a decrease in ZnO crystallite size from ~ 61 to 44 

nm and an increase in microstrain up to 0.93%, due to creation of defects during prolonged mechanical 

activation (Table I).  
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Figure 2. SEM micrographs of the fractured surfaces of a) PVDF, b) P5Z0 and c) P5Z10 
 

Figure 2 shows SEM micrographs of fracture surfaces of PVDF and PVDF-ZnO composites with non-activated 

and mechanically activated (10 min) ZnO fillers. The fracture surfaces of the composites show presence of ZnO 

agglomerates on the surface of the polymer and inside the polymer matrix, which appear as micrometer-sized 

particles in SEM images. Sample with non-activated filler exhibits more surface agglomerates (Figure 2b), 

while sample with activated filler appears to exhibit smoother surface (resulting in lower contrast), suggesting 

much better dispersion of ZnO particles inside the polymer matrix for filler activated for 10 min (Figure 2c).  

 

Figure 3. XRD patterns of PVDF and PVDF-ZnO composites with 5 wt% of non-activated and mechanically 
activated fillers. Rietveld analysis of non-activated and activated ZnO filler powders is shown right (results are 
shown in Table I). 
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XRD patterns of the PVDF and PVDF-ZnO composites with 5 wt.% of non-activated and mechanically 

activated (5 and 10 min) filler are shown in Figure 3. In the diffraction pattern of PVDF, all three phases, ,  

and  [corresponding JCPDS (Joint Committee on Powder Diffraction Standards) database card numbers are 

JCPDS 42-1650, 38-1638 and 42-1649], are present, with the pronounced contribution of -phase. There is also 

a broad peak from the amorphous phase at low 2θ, suggesting relatively significant volume of the amorphous 

phase in the samples. In addition, the peaks of PVDF phases appear to be relatively broad, making phase 

composition analysis difficult. XRD patterns of PVDF-ZnO composites show additional peaks of hexagonal 

ZnO phase. ZnO diffraction lines, assigned to (100), (002), (101) reflections, become broader as the activation 

time increases due to reduced size of the ZnO particles and more pronounced lattice distortions [39]. Taking into 

account very small differences between the positions of γ (110) and β (110) reflections (~ 20.2° versus ~ 20.6°), 

and no visible peak at β (220) position, XRD analysis could not provide information on the changes in phase 

composition of PVDF, induced by non-activated and mechanically activated fillers. For this reason, Raman 

spectroscopy, which is much more sensitive to changes in the crystal structures within polymer, was performed.  

 

Figure 4. a) Raman spectra of PVDF and PVDF-ZnO composites with 5wt.% of the fillers mechanically 
activated for various activation times. b) The same spectra in the region from 700 to 1200 cm-1. 

 

Figure 4 shows Raman spectra of PVDF and the composites (with 5 wt.% of filler). The most 

pronounced changes in the Raman spectra were observed in the range from 750 - 900 cm-1. In order to better 

illustrate these effects, the spectra are shown in the range from 700 – 1200 cm-1 (Figure 4b). The analysis of the 

Raman spectrum of PVDF suggested that -phase is dominant: peak at ~ 811 cm-1 is pronounced, which is 

typical of high content of -phase [42, 43]. Peaks at ~ 838 cm-1, ~ (874 – 882) cm-1  and ~ 1431 cm-1 may 

originate from all three phases (,  and ), however, in the spectrum of the pure -phase, the line at ~ 1431 cm-1 

is very strong, unlike the corresponding lines in the spectra of - and -phase, suggesting that the main 

contribution to the line at ~ 1431 cm-1 in our spectrum comes from -phase. The fact that one of the strongest 

lines in the Raman spectrum of the pure -phase at ~ 800 cm-1 is present only as a shoulder in our spectrum 

indicates that the peaks at ~ 838 cm-1 and ~ 1431 cm-1 should be assigned primarily to the  and  phases [42-
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45]. Furthermore, the peak at ~ 1431 cm-1 is more intensive than the broad peak at ~ (874 – 882) cm-1  in 

accordance with the assumption of the dominance of  phase.  

The analyses of the Raman spectra of the composites showed that non-activated ZnO filler reduces 

crystallinity of the polymer. The intensity of crystalline polymer lines generally decreases in P5Z0 sample and 

strong peaks at 1431 cm-1 and 2980 cm-1, which represent the combination of all three crystalline phases, almost 

disappear (Figure 4). The decrease in intensity of the peaks at ~ 811 cm-1 (the  phase) and ~ 838 cm-1 (primarily 

 and  phase) is larger than that of the  peak at ~ 800 cm-1, indicating a reduction in the contribution of  and 

 phases. Raman spectra of the PVDF-ZnO composites with fillers activated for short times (5 and 10 min) 

show that mechanical activation results in significant changes in crystalline morphology of the PVDF matrix. 

The results suggest that the presence of activated ZnO particles induces a general rise in the intensity of 

crystalline polymer lines and an enhancement of -phase crystallization in PVDF. In the spectra of P5Z5 and 

P5Z10 samples (Figure 4) the intensity of the line at ~ 811 cm-1 (the  phase) decreases relative to the intensity 

of the peak at ~ 838 cm-1. Having in mind that the strongest  line at 800 cm-1 is still relatively weak, the peak at 

~ 838 cm-1 can be attributed primarily to the contribution of  and  phases. Furthermore, taking into account 

that an increase in intensity of the peak at ~ 838 cm-1 occurs if the excess of  phase is present in the sample 

[43], the observed change in peak-height ratio of 811 cm-1 peak to 838 cm-1 peak is most likely due to enhanced 

formation of  crystals. This indicates that the particles mechanically activated for 5 and 10 min act as 

nucleation agents for  phase crystallization in PVDF. 

 

 

 

Figure 5. FTIR spectra of pure PVDF and samples with non-activated (P5Z0) and activated ZnO fillers (P5Z5 
and P5Z10). Smaller sections show enhanced 800-900 cm−1 and 2900-3100 cm−1 regions. 
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Fourier-transform infrared (FTIR) spectra of pure PVDF and PVDF-ZnO composites show that the pure PVDF 

is synthesized as predominantly γ-phase with prominent peaks at 833 and 1234 cm−1 (Figure 5). Introduction of 

ZnO filler promotes crystallization of α- and β-phases, with reduction in content of γ-phase and overall 

reduction in crystallinity of the samples. The presence of α-phase is established from peaks at 766 and 976 cm−1, 

while β-phase is identified using peaks at 840 and 1279 cm−1. Enhancement of region from 800 to 900 cm−1 in 

Figure 5 shows that there is a shift in the position of maximum of the peak at 833 cm−1 towards 840 cm−1 in 

samples with ZnO fillers, suggesting formation of β-phase [44], which is supported by a shift in the position of 

CH2 modes in this region towards lower energies, similar to what was observed in PVDF doped with gold 

nanoparticles [45]. Lower intensities of the peaks and lower shift of CH2 modes suggests that the content of 

crystalline β-phase is most likely lower than α- and γ- phases, and overall FTIR spectrum suggests that both 

PVDF and PVDF-ZnO composite generally exhibit relatively poor crystallinity of the PVDF phase. However, 

FTIR indicates that the introduction of ZnO filler supresses the crystallization of γ-phase and promotes 

crystallization of α- and β-phases. The apparent differences between the Raman and FTIR results can be 

attributed to the fact that Raman spectroscopy only probed the surface of the PVDF/ZnO composite films, which 

is where the effects of strain on PVDF fibers is the most pronounced. This is also indicated by the fact that 

PVDF sample with non-activated filler exhibits extremely poor Raman spectrum, while its FTIR spectrum is not 

much different than that of other samples. This suggests that the distribution of phases in the PVDF/ZnO films 

would be inhomogeneous, with β-phase being more prevalent at the surface of the film, due to increased strain 

favoring its formation, with α-phase occurring mostly on the inside of the film. 

 

Figure 6. Dielectric permittivity (ε’) vs. temperature curves for the pure PVDF and P5Z0, P5Z5, and 
P5Z10 composites measured at several frequencies: a) 60 Hz, b) 200 Hz, c) 6 kHz and d) 60 kHz 
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All four materials exhibit typical dielectric behaviour of PVDF e.g. at fixed frequency of the external 

field, the dielectric permittivity increases with increasing in temperature [46]. Also, the broad dielectric 

permittivity peak shifts to a higher temperature as the frequency increases, which is typical for a relaxation 

process in ferroelectrics [47]. On the other hand, the effects of the non-activated and activated ZnO particles on 

the dielectric permittivity of the polymer are different. The introduction of mechanically activated ZnO powders 

into the matrix leads to an increase in the dielectric permittivity of the polymer in the entire temperature range. 

In contrast, the composite with the commercial ZnO powder as a filler exhibits lower value of the dielectric 

permittivity than the pure PVDF (Fig. 6). This behaviour is a direct consequence of different crystallization 

behaviour of the PVDF matrix in the presence of these two type of fillers. Since inorganic content in the 

composites is the same (5 wt.%), an increase in dielectric permittivity can be related to a higher content of -

phase crystals in the composites with activated fillers (Fig. 4) [48, 49]. The fact that the dielectric permittivity of 

the composite with non-activated ZnO powder is lower than that of the pure PVDF suggests that the 

introduction of the particles with higher dielectric permittivity into PVDF matrix is not the sole condition for 

improvement of dielectric permittivity of the polymer. Rather, the dielectric properties will depend on the 

change in the PVDF matrix crystal polymorphism during the crystallization in the presence of the particles as 

well as on the strength of the interaction of the fillers and matrix chains. Finally, the results in Fig. 6 show that 

the composite with the ZnO filler mechanically activated for 5 min exhibits the highest dielectric permittivity, 

suggesting that this is the optimal activation time of the filler prior to mixing with the polymer matrix. It seems 

that prolonged mechanical activation has a detrimental effect on the surface activity of the particles, which 

results in their reduced activity as nucleating agents within the polymer matrix. Loss tangent curves that 

correspond to the dielectric permittivity (ε’) curves in Fig.6 are shown in Fig. 7.  

Table II. Values of dielectric permittivity and loss tagnent for different frequencies at 300K and 400K. 

Sample T=300K T=400K   
60Hz dielectric 

permittivity 
loss tangent dielectric 

permittivity 
loss tangent αc – onset (K) 

PVDF 2.400 0.005 4.060 0.251 330 
P5Z0 1.690 0.005 2.630 0.218 330 
P5Z5 3.630 0.050 6.540 0.388 310 
P5Z10 3.110 0.056 5.250 0.431 310 
200Hz    
PVDF 2.395 0.058 3.681 0.179 330 
P5Z0 1.682 0.005 2.412 0.151 330 
P5Z5 3.486 0.060 5.318 0.270 320 
P5Z10 2.944 0.070 4.527 0.303 320 
6kHz    
PVDF 2.355 0.010 3.017 0.073 350 
P5Z0 1.663 0.009 2.088 0.049 350 
P5Z5 2.807 0.060 3.822 0.163 340 
P5Z10 2.562 0.040 3.209 0.132 330 
60kHz    
PVDF 2.355 0.043 3.017 0.037 360 
P5Z0 1.643 0.039 2.051 0.025 360 
P5Z5 2.647 0.054 3.184 0.120 350 
P5Z10 2.443 0.048 2.835 0.083 350 
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Figure 7. Loss tangent vs. temperature curves for the pure PVDF and P5Z0, P5Z5 and P5Z10 
composites  measured at several frequencies: a) 60 Hz, b) 200 Hz, c) 6 kHz and d) 60 kHz 

 
All loss tangent curves show a typical low temperature relaxation observed at 200 K < T < 300 K [49], 

corresponding to glass transition processes of PVDF, involving crystalline and amorphous-crystalline regions. It 

is influenced by the composition and preparation of the composite [50]. The position of this relaxation peak 

shifts towards higher temperature (at fixed frequency of the external field) after introduction of mechanically 

activated particles. This indicates strong interaction of the activated particles and PVDF matrix chains, which 

reduces segmental mobility of PVDF chains and affects the cooperative motions in the polymer matrix, 

necessary for the glass transition to take place. Both dielectric permittivity and loss tangent curves exhibit a 

sharp increase at temperatures above 325 K, which is more pronounced at lower frequencies and in the 

composites with activated fillers (Figures 6 and 7). It most likely contains contributions from multiple 

processes, like electrode polarization processes [51] and αc-transition [52]. Electrode polarization is a 

consequence of the accumulation of the charges at the surface of the electrode while under the force of the 

electric field. The electrode processes usually mask Maxwell–Wagner–Sillars (MWS) polarization processes, 

which are typical for heterogeneous systems and occur through polarizations at the interfaces of the constituents. 

The shift of the onset of the increase of dielectric permittivity to higher temperatures with increase in frequency 

is typical of αc-transition [53, 54], which is indicated by the decrease in maximum value of dielectric loss at the 

end of the temperature interval at 400K with increase in frequency (Table II). In addition, the onset of 

αc-transition appears to shift towards lower temperatures in samples containing mechanically activated fillers, 

compared to pure PVDF and the sample with non-activated filler. This indicates that the mechanical activation 

of the filler reduces the perfection of the lamellar PVDF crystals, making αc-transition easier [55, 56], leading to 

lower crystallinity of PVDF in the samples containing activated fillers. 
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Figure 8. Arrhenius plots for the pure PVDF and P5Z0, P5Z5 and P5Z10 composites. 

 

In order to determine whether strong particle-chain interaction was also reflected in the change in activation 

energy of this transition, the values of overall activation energy of the relaxation peak were calculated, since its 

position shifts to higher temperatures with increase in frequency, allowing the application of Arrhenius 

equation, 

  = 0e
−Ea/RT,       (1) 

where  is the frequency used for measurement of dielectric permittivity, R is the universal gas constant, T is the 

position of the peak maximum and Ea is the overall average activation energy of the transition. According to Eq. 

1, Ea is calculated from the slope of the plot log  = f(1/T).  Fig. 8 shows the obtained Arrhenius plots for the 

pure PVDF and P5Z0, P5Z5 and P5Z10 composites. The activated energies (Ea) of the relaxation peak 

determined from the linear regression of the plots in Fig. 8 are presented in Table III. These suggest that the 

introduction of activated fillers in the PVDF matrix probably increases the value of the average activation 

energy, which would be consistent with the strong particle-chain interaction in these composites.  

Table III. The overall average activation energy values of the low temperature relaxation processes, calculated 
from the linear regression of the plots in Fig. 8  

Sample  Ea (kJ mol-1)
PVDF  206 ± 8
P5Z0  214 ± 8
P5Z5  223 ± 9
P5Z10  221 ± 9

 

Conclusions 

Surface modification of ZnO nanoparticle fillers by means of mechanical activation has pronounced 

effect on the structural properties of the PVDF polymer matrix. TEM and SEM analyses showed that 

mechanical activation reduces particle size, and Raman and FTIR measurements showed that ZnO particles 

mechanically activated for short time (5 and 10 min) influence the crystallization of PVDF in different way than 
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non-activated ZnO particles. Non-activated ZnO filler decreases the crystallinity of the PVDF matrix and 

slightly increases the content of the  phase. On the other hand, PVDF-ZnO composites with 5 and 10 min 

activated fillers contain more  (ferroelectric) phase. These results, together with our previously published work 

[37, 38], show that mechanical activation of ceramic and semiconductor fillers prior to mixing with PVDF 

matrix can be used as general method for the fabrication of -phase rich composite films. Dielectric 

spectroscopy measurements showed that the introduction of mechanically activated ZnO fillers resulted in an 

increase in dielectric permittivity, most likely due to an increase in -phase content, while the introduction of 

non-activated ZnO powder resulted in a decrease in dielectric permittivity, likely due to the disruption of 

crystallization of PVDF matrix caused by the filler. The position of the broad relaxation peak in tan δ spectra of 

the composites with activated fillers shifted towards higher temperatures with respect to its position in the pure 

polymer. This suggests strong interaction of activated particles and polymer chains, due to a combination of 

increased surface area and increased concentration of surface defects in the activated fillers. This would be 

consistent with the obtained values of the activation energies of the relaxation peak via Arrhenius equation. 
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