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Abstract
Specialization is a central concept in ecology and one of the fundamental properties of para-

sitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to

generalized parasitoids, presumably owing to the trade-off between host range and host-

use efficiency. However, it remains unknown how parasitoid host specificity and host-use

depends on host traits related to susceptibility to parasitoid attack. To address this question,

we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid spe-

cies in nine European countries. We found that only aphid traits related to local resource

characteristics seem to influence the trade-off between host-range and efficiency: more

specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on

aphids with sparse colonies, ant-attendance and without concealment, and this was more

evident when host relatedness was included in calculation of parasitoid specificity. More

traits influenced average assemblage specialization, which was highest in aphids that are

monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrme-

cophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Dif-

ferences in aphid wax production did not influence parasitoid host specificity and host-use.

Our study is the first step in identifying host traits important for aphid parasitoid host specific-

ity and host-use and improves our understanding of bottom-up effects of aphid traits on

aphid-parasitoid food web structure.
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Introduction
The trade-offs hypothesis suggests that specialization towards a host or a group of hosts is
accompanied by an increase in host-use efficiency [1]. This has been documented for parasites
[2, 3] and aphid parasitoids [4, 5] where abundance of parasitoids on their hosts was used as a
proxy for host-use efficiency. Higher host-use efficiency allows specialists to coexist with gener-
alists on the shared resources, but this “specialist advantage”may be context-dependent [6]. In
the case of parasitoids, specialists may have an advantage and specialize towards hosts with cer-
tain traits [7, 5], but the relative importance of different host traits remains largely unknown.
Identifying these traits can help identification of general patterns and hence make aphid-para-
sitoid interactions more predictive [8]. It improves our understanding of processes that govern
parasitoid specialization and host-use and increases our knowledge that is currently based on a
large number of species-specific choice experiments.

Host traits related to host defenses and host detection are likely to be important for koino-
biont parasitoids and probably more so than species body size, the only trait commonly investi-
gated in predator-prey food webs [9]. Specialization on certain hosts may improve parasitoids’
abilities to find suitable hosts or to overcome host defense mechanisms [10, 11]. More special-
ized parasitoids are often expected to be more efficient and thus more abundant on hosts that
are less susceptible to parasitoid attacks [12]. For example, more specialized parasitoids capable
of overcoming ant attacks due to e.g. chemical or behavioral adaptations may be more common
and more efficient on ant-attended aphids. However, for some host traits it is hard to predict
the direction of their effect due to multiple possible mechanisms affecting parasitoid host-use
and specialization. A single trait, for example large aphid colony size, may simultaneously
make a colony easy to locate even for generalists, but also increase the strength of aphid
defense, thereby requiring some adaptation to overcome host defense mechanisms. To the best
of our knowledge, our study is the first attempt to quantify the net effect of multiple aphid traits
on parasitoid specialist advantage (but see [13, 14, 15] for the effect of individual aphid traits,
such as presence of endosymbiotic bacteria or aphids feeding on toxic plants, on parasitoid
host specificity).

Our understanding of the effects of aphid traits on parasitoid communities comes mostly
from studies of parasitoid assemblage sizes, i.e. number of parasitoid species per aphid species
[11, 16, 17, 18, 19, 20, 21]. These studies revealed some aphid traits, such as facultative ant-
attendance, host plant-alteration, polyphagy, habitat disturbance (agricultural and urban vs.
natural habitats) to be positively associated with aphid parasitoid assemblage sizes, while col-
ony aggregation, host mobility, body size and wax production appeared to have no influence
[18, 19]. However, less is known about the effects of these aphid traits on parasitoid host speci-
ficity and specialist advantage.

Host specificity is one of the fundamental properties of parasitoids and it influences the abil-
ity of parasitoids to use novel hosts and habitats, affects their vulnerability to extinction and
determines their biocontrol potential [22, 23, 24]. Parasitoid specificity can be defined as the
number (Fig 1a) or taxonomic diversity (Fig 1b) of species in the host range [25, 26]. Degree of
host specialization may be phylogenetically conserved and aphid parasitoids are often
restricted to develop in certain host species, genera or higher taxa [27]. Thus, an important lim-
itation to parasitoid host ranges and the structure of aphid-parasitoid food webs is set by phylo-
genetic distance among hosts [28]. The cost of adaptation to phylogenetically more related
hosts may be lower because closely related hosts are often more similar in ecological, behav-
ioral, physiological or biochemical traits. Hence, even when two parasitoids attack the same
number of host species, the one which attacks more related hosts can be considered as more
specialized (Fig 1b). In plant-herbivore interactions, Rasmann & Agrawal [29] showed that
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both, host plant phylogenetic distance as well as host plant defense traits and habitat affiliation
restricted herbivore host range. The trade-off between dietary breadth and host-use efficiency
may result in higher overall abundances of specialists (“specialist advantage”) across all hosts
they share with generalists (Fig 1c). This has been confirmed for aphid parasitoids, but only
when the measure of specialization accounted for host relatedness (Fig 1d) [5]. However, spe-
cialists are likely to adapt to certain host characteristics, for example ant-attendance, while
occasionally attacking other hosts. This should result in a higher specialist advantage on ant-

Fig 1. Specialist-generalist trade-off calculated using two measures of parasitoid specialization based on the number (a) and taxonomic diversity (b) of
species in the host range. Upper panel illustrates the difference between two measures of host specialization and the lower panel illustrates theoretical
expectations for our analysis. For pairs of parasitoids, the proportional abundance of the relative specialist (red, “S”) and generalist (blue, “G”) on the
shared hosts is compared. Proportion of specialists can be measured across all shared hosts (c, d, see also [5]) or dependent on the host traits (e, f, our
study). Black circles present different host species and the width of the red and blue links presents frequency of aphid-parasitoid interactions. Dashed
squares highlight shared hosts, for which pie charts indicate the proportional abundance of relative specialists and generalists.

doi:10.1371/journal.pone.0157674.g001
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attended compared to non-attended hosts (Fig 1e and 1f). Which aphid traits affect parasitoid
host specificity and specialist-generalist trade-off and in which direction is still not well
understood.

Aphid parasitoids represent a particularly interesting group for the analysis of specialist-
generalist host-use for several reasons. First, parasitoids may comprise 20–25% of all insect spe-
cies [11] and aphids (Aphidoidea) and their parasitoids (Aphidiinae) can be found in a large
variety of habitats and in almost all climatic regions in the world. Second, aphid parasitoids are
important agents in biological pest control and their host-use efficiency is therefore of particu-
lar interest [27, 30]. Finally, aphid parasitoid are a good model system because closely related
parasitoids can differ in host specificity and a number of coexisting parasitoid species can
exploit the same aphid host, allowing for comparative studies of parasitoid host specificity and
host use. The lack of field studies on the relationship between aphid traits and parasitoid host
specificity and specialist advantage is probably related to the fact that they require exhaustive
large scale field surveys of a broad range of potential hosts and high expertise in plant, aphid
and parasitoid taxonomy [11, 31]. On the other hand, existing experimental studies are spe-
cies-specific and cannot be easily generalized to the trait level. Here, we identified the most
important aphid traits influencing parasitoid host specificity and the generalist-specialist host
use by analyzing data from a 13-year survey identifying plant-aphid-parasitoid links with high
taxonomic resolution and across different habitats in nine European countries [32]. We aim to
evaluate the importance of aphid traits on host specificity and specialist advantage, i.e. the rela-
tive abundance of specialist compared to generalist parasitoids on shared hosts. We test
whether the power to detect influence of host traits depends on accounting for host relatedness
in the measure of parasitoid specificity. We further examine the correlations among aphid
traits and consider them for the interpretations. Our results will help to understand how the
net advantage of specialization depends on host traits.

Materials and Methods

Data description
We analyzed data on aphid-parasitoid interactions originally reported by Kavallieratos et al.
[32], based on a 13-year survey of parasitoids (Hymenoptera: Braconidae: Aphidiinae) and
their hosts in southeastern Europe (Serbia, Montenegro, Greece, Bosnia, Croatia, The Former
Yugoslav Republic of Macedonia, Bulgaria, Turkey and Cyprus). Plants bearing both live and
mummified (parasitized) aphids were collected from many different localities and parasitoids
were reared from the mummies in laboratory conditions (22.5°C, 65% relative humidity, 16: 8
L: D photoperiod). Hosts and parasitoids were identified to the species level. For the purpose of
our analysis, poorly sampled interactions, i.e. those with fewer than five individuals, were
excluded from the dataset. This is because these rare records represent low importance for par-
asitoid and host autecology and phylogeny and by excluding those data possible erroneous rec-
ords are weeded out [26].

Aphid traits
We examined the following aphid traits that we expected to influence the proportion of special-
ists on the shared hosts based on previous research: (a) Aphid concealment: 1. colony exposed
on the open surface, 2. colony semi-concealed (inside curled leaves, galls or on roots); (b) Aphid
colony aggregation: 1. dense, 2. sparse (individuals do not touch one another); (c) Ant-atten-
dance (myrmecophily): 1. absent, 2. facultative, 3. obligatory; (d) Mobility (how quickly aphids
drop from the plant when disturbed): 1. low, 2. high; (e) Wax production: 1. absent, 2. present;
(f) Average adult body size: 1. large (3.5–9.0 mm), 2. medium (2.0–3.5 mm), 3. small (1.2–2.0
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mm); (g) Aphid life cycle: 1. with host-plant alternation (heteroecious), 2.without host-plant
alteration (monoecious); (h) Aphid diet breadth: 1. monophagous, 2. oligophagous (feeds on
two or more plant species from same plant family), 3. polyphagous (feeds on two or more plant
species from different plant families). (i) Habitat specialization: 1.habitat specialist (limited to
one or several specific types of habitats) 2. habitat generalist (uses more types of habitats); (j)
Habitat disturbance: 1. aphid found only in semi-natural habitats, 2. aphid found also in agricul-
tural habitats. Aphid traits were found in Blackman and Eastop [33, 34, 35] and Heie [36, 37, 38,
39, 40, 41]. In several cases when literature data were not available the traits were assigned to
aphids based on the authors’ personal observations during 13 years of sampling.

Analysis
We calculated host range as: (1) number of host species from which a parasitoid emerged (SR—
shown to be independent of parasitoid taxonomy in Straub, Ives & Gratton [5]) and (2) phylo-
genetic diversity of the hosts (PSV, [42]), modified for use with taxonomies [5]. PSV is robust to
variation in sampling effort and species richness (for detailed explanations and calculations see
Helmus et al. [42] and Straub, Ives & Gratton [5]). All analyses were performed in R version
3.1.0 [43].

Influence of host traits on the proportion of specialists on the shared host. Following
Straub, Ives & Gratton [5] we looked at all pairwise comparisons between two parasitoid spe-
cies that shared at least one host species and had different host ranges. The parasitoid species
which had the smaller host range was then labeled “relative specialist” (hereafter “specialist”)
and the species with the larger host range “relative generalist” (hereafter “generalist”). We mea-
sured host use efficiency as the abundance of parasitoids on their shared hosts [5, 44]. To
explore the effect of aphid traits on parasitoid specialist advantage we performed an explor-
atory analysis for all traits by first separating data in subsets for each level of aphid trait. Sec-
ond, for each subset we selected all hosts that were shared by the pair of parasitoids and
calculated the mean relative parasitism of the relative specialist as the mean across all of the
hosts it shared with the relative generalist. The mean relative parasitism of all specialists from
all pairwise comparisons (mean score) was then calculated for each level of aphid trait. The
pairwise comparisons avoid a confounding influence of sampling effort when calculating para-
sitoid host use efficiency. This is because in pairwise comparisons each parasitoid species in the
pair has probability of emergence independent of aphid sampling intensity.

To determine whether there was a statistically reliable difference in the mean scores among
aphids with particular traits we used a nonparametric bootstrap test (one test per trait). We
computed Monte Carlo one-tailed p-values by drawing 4999 bootstrap replicates from the
data. More specifically, we generated a bootstrap replicate by sampling rows (aphid species) in
the aphid-parasitoid matrix with replacement (maintaining the number of species per trait cat-
egory) and calculated a difference among “mean scores” (as described above) that we compared
to the observed value. The p-values were calculated by counting the number of cases the simu-
lated difference in mean scores is greater/lower from the observed difference and dividing by
the number of bootstrap replicates

Influence of host traits on the average weighted specialization of parasitoid assem-
blage. To investigate the effects of aphid traits on the average weighted specialization of para-
sitoid assemblage we first summed the product of specialization index (Si = PSV or SR) of all
the parasitoid species attacking an aphid species and their relative abundances (Ai) on that
aphid species: ∑(Si x Ai) where subscript i denotes aphid species (i = 1:142). We then calculated
mean values for each aphid trait level and tested the difference in means by using nonparamet-
ric bootstrap test as described above.
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Relationship among aphid traits. The influences of different aphid traits on parasitoid
host use cannot be interpreted in isolation from one another. To test the relationships among
categories of different aphid traits we performed Multiple Correspondence Analysis (MCA),
which is a specific application of correspondence analysis (CA) with multiple categorical vari-
ables [45]. MCA can also be viewed as a PCA applied on categorical data where the categories
are represented at the barycentre of the individuals with those categories [41]. Because princi-
pal dimensions of the MCAmay be influenced by a few missing values in the data, we used the
“imputeMCA” function from the “missMDA” package in R [46] which uses the regularized
iterative MCA algorithm to impute missing values [47]. For testing relationship between trait
levels among different aphid traits, we calculated the v.test following Husson, Lê & Pagès [45]
and using the “catdes” function in the “FactoMineR” package [48]. This function calculates the
proportion of species which possess one category of the factor among those that possess a cate-
gory of another factor, hence the v.test may differ depending on which category is tested first
(e.g. the proportion of semi-concealed among ant-attended is not the same as the proportion
of ant-attended among semi-concealed). If the absolute value of the v.tes is greater than 2, the
coordinate can be considered significantly different from 0.

Convergence and conservatism in defense traits, together with the knowledge about
strength and specificity of trophic interactions, is important to evaluate the role of trophic
interactions affecting community structure [49]. See S1 Table for the results of measuring phy-
logenetic signal in aphid traits.

Results
In total, we analyzed 31465 aphid-parasitoid interactions containing 142 aphid and 75 parasit-
oid species (see S2 Table for the list of species, S3 Table for the list of aphid traits and S4 Table
for the aphid taxonomic data).

Influence of host traits on the proportion of specialists on the shared host
When species richness was used as measure of parasitoid host range, only one trait had a signif-
icant effect: specialists were more abundant than generalists on shared hosts that form sparser
colonies compared to those with dense colonies (diff. in means = 0.30, p = 0.003). When spe-
cialists were defined as parasitoids that attack one or a few closely related hosts (low PSV),
more traits had significant effects: specialist relative abundance was higher on hosts that are
exposed compared to semi-concealed hosts (diff. in means = 0.20, p = 0.004), hosts that form
sparser colonies compared to those with dense colonies (diff. in means = 0.10, p = 0.02) and
hosts that have myrmecophily compared to those that are not ant-attended (diff. in
means = 0.18, p = 0.002), with a higher proportion of specialist on hosts that have facultative
ant-attendance compared to obligate (diff. in means = 0.18, p = 0.02).

Influence of host traits on the average weighted specialization of
parasitoid assemblage
Mean weighted parasitoid specialization was higher on the hosts that are habitat specialist
compared to habitat generalist, have high compared to weak mobility and not ant-attended
compared to ant attended, when using both indices for parasitoid specialization (Table 1, Fig
2). Aphids that have facultative ant attendance did not differ in mean specialization from those
with obligate ant attendance. There was a gradient of decreasing mean parasitoids specializa-
tion from mono- to polyphagous aphids and from large to small aphid body sizes, where
aphids with medium body size did not differ from those with small.
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Relationship among aphid traits
The effects of different aphid traits on parasitoid host use cannot be seen in isolation from one
another, as these traits are often related (Fig 3). Aphid species with facultative ant-attendance
were often characterized by weak mobility (v.test = 3.73, p = 0.0001), obligate ant-attended
aphids were related to weak mobility (v.test = 4.52, p< 0.0001) and concealment (v.test = 4.89,
p< 0.0001) and aphids that are not ant-attended often had high mobility (v.test = 6.75, p<
0.0001) and sparse colonies (v.test = 3.60, p = 0.0003). Aphids with high mobility were often
not ant-attended (v.test = 6.75, p< 0.0001), had sparse colonies (v.test = 5.38, p< 0.0001), large
body size (v.test = 4.55, p< 0.0001), inhabited natural habitats (v.test = 4.05, p< 0.0001), were
exposed (v.test = 3.82, p< 0.0001) and monophagous (v.test = 3.37, p< 0.0001). Aphids that
were restricted to semi-natural habitats were often habitat specialists (v.test = 5.70, p< 0.0001),
monophagous (v.test = 5.62, p< 0.0001), monoecious (v.test = 4.79, p< 0.0001) with high
mobility (v.test = 4.05, p< 0.0001).

Discussion
In this study we show that relative specialist and generalist parasitoids differ in their host use
efficiency and average specialization of assemblages across aphid hosts possessing certain traits.

Table 1. Average weighted specialization of parasitoid assemblage per aphid trait level and corresponding p-values as a result of bootstrap test.
Parasitoid specialization is measured as species richness (SR) or phylogenetic diversity of the hosts (PSV).

Aphid trait Trait level PSV p-value SR p-value

Habitat specialization Specialist 0.71 0.042 12.38 0.017

Generalist 0.81 16.81

Mobility High 0.64 0.025 6.45 0.0001

Weak 0.77 16.28

Ant-attendance Absent 0.69 0.01a 10.85 0.0004a

Facultative 0.87 17.11

Obligate 0.78 17.33

Diet breadth Monophagous 0.70 0.028b 11.04 0.0002b

Oligophagous 0.76 13.31

Polyphagous 0.81 18.65

Body size Large 0.64 0.032c 8.28 0.0002c

Medium 0.80 15.99

Small 0.72 15.97

Life cycle Monoecious 0.72 > 0.1 12.18 0.0024

Heteroecious 0.80 18.20

Colony aggregation Sparse 0.65 0.074 8.55 0.006

Dense 0.76 14.90

Habitat disturbance Semi-natural 0.68 0.008 14.30 > 0.1

Agricultural 0.82 14.08

Concealment Exposed 0.74 > 0.1 13.23 0.068

Semi-concealed 0.76 16.80

Wax production Absent 0.75 > 0.1 14.14 > 0.1

Present 0.74 13.76

a
—p-value presents difference between not ant-attended vs. ant-attended aphids (both facultative and obligate)

b
—p-value presents difference between monophagous and polyhagous aphids

c
—p-value presents difference between large vs. medium and small body sizes.

doi:10.1371/journal.pone.0157674.t001
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Not all host traits supported both, higher average parasitoid specialization and higher specialist
advantage. Average assemblage specialization was the highest on aphids that are monopha-
gous, monoecious, large, highly mobile, without myrmecophily, habitat specialists, inhabit
semi-natural habitat and have sparse colonies. Relative specialists had higher host use in sparse
and exposed colonies and on hosts with ant-attendance, compared to relative generalists. Thus,
sparse colony aggregation was the only trait that supported both, high average specialization of
parasitoid assemblages and high relative specialist advantage.

Fig 2. Violin plots presenting distribution of average weighted specialization of parasitoid assemblages per aphid trait.
The median value for each aphid trait is shown by the white circle and the length of the thick black line represents the interquartile
range. Parasitoid specialization is measured as species richness (SR) or phylogenetic diversity of the hosts (PSV).

doi:10.1371/journal.pone.0157674.g002
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Dense aphid colonies are more susceptible to generalist predator attacks and spread of fun-
gal infections during humid weather [50]. Thus, specialist parasitoids may avoid intraguild pre-
dation, fungal infection and competition by focusing on sparse colonies which are easier for
them to locate, compared to generalist parasitoids. These positive effects of focusing on sparse
colonies may balance the general disadvantage that they are rare, harder to find and that they
represent a lower resource density. Contrary, some generalist parasitoids are shown to have an
innate expectancy of a clumped aphid distribution [51] and may leave patches with few aphids
more rapidly than when aphids are abundant [52]. Furthermore, specialization might be
expected among parasitoids of predictable (more spatio-temporally stable) hosts [11, 53] and
population sizes of aphids with dense colonies are shown to be temporally more unstable [50].
Instability of resources may also be an important factor explaining lower average assemblage
specialization of parasitoids when using hosts that are either polyphagous, alter plants during
their life cycle (heteroecious), habitat generalists or exploit highly dynamic and only temporally
available agricultural habitats (related traits, see Fig 3). Movement in space, i.e. switching

Fig 3. The first two principal axes (Dim1 and Dim2 with percentage of variance) and the cloud of categories
as a result of MCA (Multiple correspondence analysis) on the aphid species × aphid traits matrix. Trait
levels that are close together tend to be associated in aphids. Framed labels present trait levels which supported a
higher proportion of relative specialists (specialist advantage). Gray labels present traits levels that supported
higher average specialization of parasitoid assemblages. See the text for explanation of the traits and trait levels.

doi:10.1371/journal.pone.0157674.g003
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between plants and habitats can protect aphids from being followed by more specialized para-
sitoids and they may therefore be more easily parasitized by generalists that are already there
[10]. However, feeding on a single plant or in a single habitat does not give any direct protec-
tion to aphids and therefore the more specialized species within the parasitoid assemblage may
not be more successful in their host use.

Hosts living in non-aggregated, sparse colonies were often highly mobile and without ant-
attendance. Mobility is an important trait for aphid defense from parasitoids [10] and highly
mobile aphids supported more specialized parasitoids on average, but relative specialists did
not have higher host use efficiency. Hence, although highly mobile species are on average
attacked more by more specialized parasitoids compared to aphids with low mobility, this does
not translate in better host use efficiency of relative specialists. Behavioral defense, such as
dropping from the plants increases in adult aphids compared to earlier instars [54], but many
parasitoids preferably attack larval stages [55]. It is possible that adults are more often attacked
by specialist parasitoids, but there is no difference in specialist/generalist host use efficiency on
species with different mobility in our study due to no advantage of specialists when attacking
earlier life stages. Similarly, this might be true for aphids with large body sizes as adults of larger
aphids can better defend themselves, but earlier, smaller instars are more often parasitized.

Surprisingly, we found higher average parasitoid specialization on aphids that are not ant-
attended, although relative specialists species did have advantage on myrmecohilous aphids,
especially so on those with facultative myrmecophily. A major benefit for parasitoids attacking
ant-attended aphids is avoidance of intraguild predation and hyperparasitism and reduced
honeydew in aphid colonies that may promote infection by entomopathogenic fungi [56, 57].
This can increase specialist advantage, compared to relative generalists. On the other hand, the
higher mean specialization of parasitoids on aphids that are not ant-attended in our study may
result from correlation of this trait with high aphid mobility and low colony aggregation, both
of which had higher mean parasitoid specialization. Hence, although parasitoids that are spe-
cialized on closely related, ant-attended aphids do have advantage compared to more general-
ized species, other traits, such as mobility or colony aggregation may have stronger effect on
average specialization of the whole parasitoid assemblage. Starý [30] argued that ant-atten-
dance does not influence parasitoid host range, although secondary adaptations and develop-
ment of defense mechanisms against ant attacks might develop in parasitoids. Aphid behavior
and mode of living might instead have a more important role in parasitoid specialization [30].
Additionally, obligate myrmecophiles have higher extinction risks [19] and might be unstable
resources for highly specialized parasitoids. For example, Lysiphlebus cardui (Marsh.) can
reach 100% parasitisation on ant-attended Aphis fabae cirsiiacanthoidis leading to eradication
of all local aphid colonies [57] and switching to not-attended colonies of this facultative myr-
mecophile is highly beneficial for parasitoids in such a situation. Furthermore, even if more
generalized parasitoids do not seem to be limited by ant-attendance, more specialized species
can have an advantage in ant-attended and especially so in facultative ant-attended aphid spe-
cies that are shown to support larger parasitoid assemblages [19] and therefore exert higher
competition pressure.

Hawkins [58, 59] predicted that parasitoid assemblages on concealed hosts should be domi-
nated by generalists whereas those on exposed hosts should be dominated by specialist parasit-
oids (but see Hrcek et al. [31]). This is because they found idiobionts parasitoids (generalists)
to often attack concealed hosts, while koinobionts (specialists) were more common in exposed
hosts. In agreement, we found parasitoid specialist advantage of aphid parasitoids (koino-
bionts) to be higher on exposed hosts. Our finding is largely due to the comparison between
exposed hosts and hosts within curled leaves (semi-concealed), since hosts feeding in other
feeding niches were rare in our study. Starý [30] showed that the generalist parasitoid Ephedrus
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persicae (Frogatt), which attacks aphids feeding in galls and curled leaves, may attack externally
feeding aphids only when their densities are high enough to cause leaves to curl. This may be
because curled leaves are highly visible and therefore easily located by generalist parasitoids,
while providing minimal physical protection to aphids.

Our study highlights the importance of aphid traits and taxonomic relatedness in parasitoid
specialization and host use and contributes to developing a more mechanistic understanding of
the species interactions in aphid-parasitoid food webs. It appears that host traits related to local
resource characteristics (colony structure, myrmecophily, concealment) are the most impor-
tant for specialist advantage, while the traits related to host spatial niche and host-plant use
were additionally important for mean parasitoid assemblage specialization. Interactions among
the host traits as well as other characteristics of aphids (e.g. local abundances, immunological
defense), or characteristics of their host-plants (e.g. plant architecture, secondary compounds)
not investigated in our study may also be important for parasitoid specialization and host use
[13, 14]. Furthermore, since parasitoid host shifts may happen through adaptive mechanisms
or through mutual exclusion within local communities [60], the effect of aphid traits on para-
sitoid host use and specialist advantage remains to be tested in spatio-temporally replicated
food webs across different hosts and habitats, as well as experimentally. Importantly, the
majority of host traits only had a significant effect on the relative specialist advantage when tax-
onomic relatedness among hosts was included in the calculation of parasitoid host specificity.
Some of these traits showed strong phylogenetic signal (e.g. ant-attendance), supporting evi-
dence that ecologically relevant traits can show phylogenetic conservatism [49], and emphasiz-
ing importance of the cost of adaptation on distantly related hosts when comparing parasitoid
specialist vs. generalist host use efficiency. These results are in agreement with previous studies
that highlighted importance of including host phylogenetic information to assess natural
enemy host range in aphid parasitoids [14, 15], fish parasites [61] and bird parasites [62]. In
addition to host traits, ability to find and successfully parasitize a host can be under strong
selection, thus, parasitoid relatedness can play an important role in determining their food web
interactions [62].
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