Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes

Link to this page

info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45001/RS//

Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes (en)
Наноструктурни функционални и композитни материјали у каталитичким и сорпционим процесима (sr)
Nanostrukturni funkcionalni i kompozitni materijali u katalitičkim i sorpcionim procesima (sr_RS)
Authors

Publications

Characterization of glycidyl methacrylate based magnetic nanocomposites

Marković, Bojana M.; Spasojević, Vojislav V.; Dapcević, Aleksandra; Vuković, Zorica M.; Pavlović, Vladimir; Randjelović, Danijela, V; Nastasović, Aleksandra B.

(Savez hemijskih inženjera, Beograd, 2019)

TY  - JOUR
AU  - Marković, Bojana M.
AU  - Spasojević, Vojislav V.
AU  - Dapcević, Aleksandra
AU  - Vuković, Zorica M.
AU  - Pavlović, Vladimir
AU  - Randjelović, Danijela, V
AU  - Nastasović, Aleksandra B.
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5029
AB  - Magnetic and non-magnetic macroporous crosslinked copolymers of glycidyl methacrylate and trimethylolpropane trimethacrylate were prepared by suspension copolymerization and functionalized with diethylenetriamine. The samples were characterized by mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy analysis (FTIR-ATR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SQUID magnetometry. The FTIR-ATR analysis of synthesized magnetic nanocomposites confirmed the presence of magnetite and successful aminofunctionalization. Non-functionalized and amino-functionalized nanocomposites exhibited superparamagnetic behavior at 300 K, with a saturation magnetization of 5.0 emu/g and 2.9 emu/g, respectively. TEM analysis of the magnetic nanocomposite has shown that magnetic nanoparticles were homogeneously dispersed in the polymer matrix. It was demonstrated that incorporation of magnetic nanoparticles enhanced the thermal stability of the magnetic nanocomposite in comparison to the initial non-magnetic macroporous copolymer.
PB  - Savez hemijskih inženjera, Beograd
T2  - HEMIJSKA INDUSTRIJA
T1  - Characterization of glycidyl methacrylate based magnetic nanocomposites
EP  - 35
IS  - 1
SP  - 25
VL  - 73
DO  - 10.2298/HEMIND181113006M
ER  - 
@article{
author = "Marković, Bojana M. and Spasojević, Vojislav V. and Dapcević, Aleksandra and Vuković, Zorica M. and Pavlović, Vladimir and Randjelović, Danijela, V and Nastasović, Aleksandra B.",
year = "2019",
abstract = "Magnetic and non-magnetic macroporous crosslinked copolymers of glycidyl methacrylate and trimethylolpropane trimethacrylate were prepared by suspension copolymerization and functionalized with diethylenetriamine. The samples were characterized by mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy analysis (FTIR-ATR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SQUID magnetometry. The FTIR-ATR analysis of synthesized magnetic nanocomposites confirmed the presence of magnetite and successful aminofunctionalization. Non-functionalized and amino-functionalized nanocomposites exhibited superparamagnetic behavior at 300 K, with a saturation magnetization of 5.0 emu/g and 2.9 emu/g, respectively. TEM analysis of the magnetic nanocomposite has shown that magnetic nanoparticles were homogeneously dispersed in the polymer matrix. It was demonstrated that incorporation of magnetic nanoparticles enhanced the thermal stability of the magnetic nanocomposite in comparison to the initial non-magnetic macroporous copolymer.",
publisher = "Savez hemijskih inženjera, Beograd",
journal = "HEMIJSKA INDUSTRIJA",
title = "Characterization of glycidyl methacrylate based magnetic nanocomposites",
pages = "35-25",
number = "1",
volume = "73",
doi = "10.2298/HEMIND181113006M"
}
Marković, B. M., Spasojević, V. V., Dapcević, A., Vuković, Z. M., Pavlović, V., Randjelović, D. V.,& Nastasović, A. B.. (2019). Characterization of glycidyl methacrylate based magnetic nanocomposites. in HEMIJSKA INDUSTRIJA
Savez hemijskih inženjera, Beograd., 73(1), 25-35.
https://doi.org/10.2298/HEMIND181113006M
Marković BM, Spasojević VV, Dapcević A, Vuković ZM, Pavlović V, Randjelović DV, Nastasović AB. Characterization of glycidyl methacrylate based magnetic nanocomposites. in HEMIJSKA INDUSTRIJA. 2019;73(1):25-35.
doi:10.2298/HEMIND181113006M .
Marković, Bojana M., Spasojević, Vojislav V., Dapcević, Aleksandra, Vuković, Zorica M., Pavlović, Vladimir, Randjelović, Danijela, V, Nastasović, Aleksandra B., "Characterization of glycidyl methacrylate based magnetic nanocomposites" in HEMIJSKA INDUSTRIJA, 73, no. 1 (2019):25-35,
https://doi.org/10.2298/HEMIND181113006M . .
3
2
5

Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel

Dostanić, Jasmina; Loncarević, Davor; Pavlović, Vladimir; Papan, Jelena; Nedeljković, Jovan M.

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Dostanić, Jasmina
AU  - Loncarević, Davor
AU  - Pavlović, Vladimir
AU  - Papan, Jelena
AU  - Nedeljković, Jovan M.
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4943
AB  - Nickel-modified titanate/TiO2 catalysts were prepared by deposition of nickel ions onto hydrothermally prepared titanate supports, followed by hydrogen temperature-programmed reduction. Two different nickel precursors (hydroxide and carbonate) were used to tune reducibility and to vary the crystal phase structure of the final catalysts. The precursor reducibility and functional properties of the final catalysts were investigated systematically using various characterisation techniques. The results revealed a more facile reduction of the hydroxide precursor compared to its carbonate counterpart. Moreover, it was found that the formation of the anatase phase was favoured by the use of the hydroxide precipitation agent. The photocatalytic activity towards hydrogen production of the prepared catalysts was evaluated in the presence of 2-propanol under simulated solar light irradiation. A thorough study of the photocatalytic performance of the synthesised catalysts was conducted as a function of the precipitation agent used and the reduction temperature applied. The catalyst with dominant anatase crystal phase displayed the highest photocatalytic activity with a maximum H-2 production rate of 1040 mu mol h(-1) g(-1), this being more than four times higher than that of its carbonate counterpart. The catalysts with titanate structure showed similar activity, independent of the precipitation method used. The nanotubular structure was found to be the dominant factor in the stability of photocatalysts under long-run working conditions.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel
EP  - 19455
IS  - 15
SP  - 19447
VL  - 45
DO  - 10.1016/j.ceramint.2019.06.200
ER  - 
@article{
author = "Dostanić, Jasmina and Loncarević, Davor and Pavlović, Vladimir and Papan, Jelena and Nedeljković, Jovan M.",
year = "2019",
abstract = "Nickel-modified titanate/TiO2 catalysts were prepared by deposition of nickel ions onto hydrothermally prepared titanate supports, followed by hydrogen temperature-programmed reduction. Two different nickel precursors (hydroxide and carbonate) were used to tune reducibility and to vary the crystal phase structure of the final catalysts. The precursor reducibility and functional properties of the final catalysts were investigated systematically using various characterisation techniques. The results revealed a more facile reduction of the hydroxide precursor compared to its carbonate counterpart. Moreover, it was found that the formation of the anatase phase was favoured by the use of the hydroxide precipitation agent. The photocatalytic activity towards hydrogen production of the prepared catalysts was evaluated in the presence of 2-propanol under simulated solar light irradiation. A thorough study of the photocatalytic performance of the synthesised catalysts was conducted as a function of the precipitation agent used and the reduction temperature applied. The catalyst with dominant anatase crystal phase displayed the highest photocatalytic activity with a maximum H-2 production rate of 1040 mu mol h(-1) g(-1), this being more than four times higher than that of its carbonate counterpart. The catalysts with titanate structure showed similar activity, independent of the precipitation method used. The nanotubular structure was found to be the dominant factor in the stability of photocatalysts under long-run working conditions.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel",
pages = "19455-19447",
number = "15",
volume = "45",
doi = "10.1016/j.ceramint.2019.06.200"
}
Dostanić, J., Loncarević, D., Pavlović, V., Papan, J.,& Nedeljković, J. M.. (2019). Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel. in Ceramics International
Elsevier Sci Ltd, Oxford., 45(15), 19447-19455.
https://doi.org/10.1016/j.ceramint.2019.06.200
Dostanić J, Loncarević D, Pavlović V, Papan J, Nedeljković JM. Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel. in Ceramics International. 2019;45(15):19447-19455.
doi:10.1016/j.ceramint.2019.06.200 .
Dostanić, Jasmina, Loncarević, Davor, Pavlović, Vladimir, Papan, Jelena, Nedeljković, Jovan M., "Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel" in Ceramics International, 45, no. 15 (2019):19447-19455,
https://doi.org/10.1016/j.ceramint.2019.06.200 . .
10
4
9