Miličić, Ljiljana

Link to this page

Authority KeyName Variants
ed7d7182-0f3d-4969-8681-ee6f046ccfcc
  • Miličić, Ljiljana (2)
Projects

Author's Bibliography

Lightweight construction ceramic composites based of pelletized fly ash aggregate

Terzić, Anja; Radojević, Zagorka; Miličić, Ljiljana; Obradović, Nina; Pavlović, Vladimir B.; Pavlović, Ljubica

(Belgrade : Serbian Ceramic Society, 2013)

TY  - CONF
AU  - Terzić, Anja
AU  - Radojević, Zagorka
AU  - Miličić, Ljiljana
AU  - Obradović, Nina
AU  - Pavlović, Vladimir B.
AU  - Pavlović, Ljubica
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/413
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5671
AB  - As coal combustion byproduct fly ash represents a risk for environment: direct ash emission from open land-fills causes pollution of air, soil and water. The solution for this severe pollution problem is fly ash reapplication in various construction ceramic composite materials. Although pelletization of waste powdery material is a known technique in the production of artificial aggregates, it still has not been widely used in construction sector. Here investigated cold-bonded fly ash aggregate was produced in semi-industrial pelletizing device. The fly ash particles were bonded with water-glass (Sodium silicate - Na2SiO3) and used as substitution for aggregate in Portland cement based composite. Half of the produced lightweight aggregate was submitted to thermal treatment and afterwards applied in the construction composite in the same ration as in the case of cold-bonded pellets. The performance characteristics of two types of lightweight composites were mutually compared and afterwards correlated with characteristics of normal-weight concrete. Compressive strength, modulus of elasticity and tensile strength were used as represents of the composites mechanical behavior. Mineral constituents of fly ash pellets were analyzed by means of X-ray diffraction analysis, differential thermal analysis was applied in crystalline phase investigation, and scanning electron microscopy in microstructural analysis. The leaching behavior and environmental impact of hazardous elements were also analyzed. It was concluded that content of potentially toxic elements found in leachate of fly-ash based composites was far below tolerance limit proposed by actual standards for the building materials, characterizing the fly ash non-harmful secondary raw material and enabling its reapplication in building materials industry. Utilizing fly ash to produce quality aggregates should yield significant environmental benefits.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
T1  - Lightweight construction ceramic composites based of pelletized fly ash aggregate
EP  - 33
SP  - 32
UR  - https://hdl.handle.net/21.15107/rcub_dais_413
ER  - 
@conference{
author = "Terzić, Anja and Radojević, Zagorka and Miličić, Ljiljana and Obradović, Nina and Pavlović, Vladimir B. and Pavlović, Ljubica",
year = "2013",
abstract = "As coal combustion byproduct fly ash represents a risk for environment: direct ash emission from open land-fills causes pollution of air, soil and water. The solution for this severe pollution problem is fly ash reapplication in various construction ceramic composite materials. Although pelletization of waste powdery material is a known technique in the production of artificial aggregates, it still has not been widely used in construction sector. Here investigated cold-bonded fly ash aggregate was produced in semi-industrial pelletizing device. The fly ash particles were bonded with water-glass (Sodium silicate - Na2SiO3) and used as substitution for aggregate in Portland cement based composite. Half of the produced lightweight aggregate was submitted to thermal treatment and afterwards applied in the construction composite in the same ration as in the case of cold-bonded pellets. The performance characteristics of two types of lightweight composites were mutually compared and afterwards correlated with characteristics of normal-weight concrete. Compressive strength, modulus of elasticity and tensile strength were used as represents of the composites mechanical behavior. Mineral constituents of fly ash pellets were analyzed by means of X-ray diffraction analysis, differential thermal analysis was applied in crystalline phase investigation, and scanning electron microscopy in microstructural analysis. The leaching behavior and environmental impact of hazardous elements were also analyzed. It was concluded that content of potentially toxic elements found in leachate of fly-ash based composites was far below tolerance limit proposed by actual standards for the building materials, characterizing the fly ash non-harmful secondary raw material and enabling its reapplication in building materials industry. Utilizing fly ash to produce quality aggregates should yield significant environmental benefits.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade",
title = "Lightweight construction ceramic composites based of pelletized fly ash aggregate",
pages = "33-32",
url = "https://hdl.handle.net/21.15107/rcub_dais_413"
}
Terzić, A., Radojević, Z., Miličić, L., Obradović, N., Pavlović, V. B.,& Pavlović, L.. (2013). Lightweight construction ceramic composites based of pelletized fly ash aggregate. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
Belgrade : Serbian Ceramic Society., 32-33.
https://hdl.handle.net/21.15107/rcub_dais_413
Terzić A, Radojević Z, Miličić L, Obradović N, Pavlović VB, Pavlović L. Lightweight construction ceramic composites based of pelletized fly ash aggregate. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade. 2013;:32-33.
https://hdl.handle.net/21.15107/rcub_dais_413 .
Terzić, Anja, Radojević, Zagorka, Miličić, Ljiljana, Obradović, Nina, Pavlović, Vladimir B., Pavlović, Ljubica, "Lightweight construction ceramic composites based of pelletized fly ash aggregate" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade (2013):32-33,
https://hdl.handle.net/21.15107/rcub_dais_413 .

Evaluation of Fly Ash Pysico-chemical Characteristics as Component for Eco-ceramic and Sintered Materials

Terzić, Anja; Pavlović, Ljubica; Obradović, Nina; Pavlović, Vladimir B.; Radojević, Zagorka; Miličić, Ljiljana; Aćimović Pavlović, Zagorka

(Belgrade : Serbian Ceramic Society, 2012)

TY  - CONF
AU  - Terzić, Anja
AU  - Pavlović, Ljubica
AU  - Obradović, Nina
AU  - Pavlović, Vladimir B.
AU  - Radojević, Zagorka
AU  - Miličić, Ljiljana
AU  - Aćimović Pavlović, Zagorka
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/532
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5690
AB  - The aim of the presented study is to evaluate utilization potential of the fly ash which is the main residue from the coal combustion thermal-plants. Decades long high production of fly ash represents extreme hazard for the environment. The storage problem of this waste material is also alerting. Thus, recycling and reapplication of fly ash in construction materials industry is the only economic solution. The well-known examples of fly-ash reapplication as a component in cement, mortar, concrete, bricks and tiles are not enough in means of reusing extreme amounts of this waste material. Therefore, new applications in ash-based composites have to be developed: eco-ceramic materials and sintered materials for refractory performances. In this investigation, characterization of three different fly ash capacities was used as base for further fly ash utilization possibilities analysis. Accent was on the investigation of the fly ash mineralogical and chemical composition. Thermal stability of crystalline phases was investigated with DTA. Macro-performance was correlated with the microstructure of fly ash studied by means of XRD and SEM analysis. Furthermore, content of trace elements, physico-chemical characteristics and leaching toxicity tests were carried out. Comparing the properties of investigated fly ashes with standard values, it could be presumed that fly ash originating from Serbian power plants can be potentially useful for high value products - eco-ceramic and refractory/sintered materials manufacturing. Key words: fly ash, microstructure, potential reusing, eco-ceramic, sintering.
Acknowledgements: This investigation was supported by Serbian Ministry of Science and Education and it was conducted under following projects: 172057 and 45008.
PB  - Belgrade : Serbian Ceramic Society
C3  - The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
T1  - Evaluation of Fly Ash Pysico-chemical Characteristics as Component for Eco-ceramic and Sintered Materials
EP  - 32
SP  - 32
UR  - https://hdl.handle.net/21.15107/rcub_dais_532
ER  - 
@conference{
author = "Terzić, Anja and Pavlović, Ljubica and Obradović, Nina and Pavlović, Vladimir B. and Radojević, Zagorka and Miličić, Ljiljana and Aćimović Pavlović, Zagorka",
year = "2012",
abstract = "The aim of the presented study is to evaluate utilization potential of the fly ash which is the main residue from the coal combustion thermal-plants. Decades long high production of fly ash represents extreme hazard for the environment. The storage problem of this waste material is also alerting. Thus, recycling and reapplication of fly ash in construction materials industry is the only economic solution. The well-known examples of fly-ash reapplication as a component in cement, mortar, concrete, bricks and tiles are not enough in means of reusing extreme amounts of this waste material. Therefore, new applications in ash-based composites have to be developed: eco-ceramic materials and sintered materials for refractory performances. In this investigation, characterization of three different fly ash capacities was used as base for further fly ash utilization possibilities analysis. Accent was on the investigation of the fly ash mineralogical and chemical composition. Thermal stability of crystalline phases was investigated with DTA. Macro-performance was correlated with the microstructure of fly ash studied by means of XRD and SEM analysis. Furthermore, content of trace elements, physico-chemical characteristics and leaching toxicity tests were carried out. Comparing the properties of investigated fly ashes with standard values, it could be presumed that fly ash originating from Serbian power plants can be potentially useful for high value products - eco-ceramic and refractory/sintered materials manufacturing. Key words: fly ash, microstructure, potential reusing, eco-ceramic, sintering.
Acknowledgements: This investigation was supported by Serbian Ministry of Science and Education and it was conducted under following projects: 172057 and 45008.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts",
title = "Evaluation of Fly Ash Pysico-chemical Characteristics as Component for Eco-ceramic and Sintered Materials",
pages = "32-32",
url = "https://hdl.handle.net/21.15107/rcub_dais_532"
}
Terzić, A., Pavlović, L., Obradović, N., Pavlović, V. B., Radojević, Z., Miličić, L.,& Aćimović Pavlović, Z.. (2012). Evaluation of Fly Ash Pysico-chemical Characteristics as Component for Eco-ceramic and Sintered Materials. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
Belgrade : Serbian Ceramic Society., 32-32.
https://hdl.handle.net/21.15107/rcub_dais_532
Terzić A, Pavlović L, Obradović N, Pavlović VB, Radojević Z, Miličić L, Aćimović Pavlović Z. Evaluation of Fly Ash Pysico-chemical Characteristics as Component for Eco-ceramic and Sintered Materials. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts. 2012;:32-32.
https://hdl.handle.net/21.15107/rcub_dais_532 .
Terzić, Anja, Pavlović, Ljubica, Obradović, Nina, Pavlović, Vladimir B., Radojević, Zagorka, Miličić, Ljiljana, Aćimović Pavlović, Zagorka, "Evaluation of Fly Ash Pysico-chemical Characteristics as Component for Eco-ceramic and Sintered Materials" in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts (2012):32-32,
https://hdl.handle.net/21.15107/rcub_dais_532 .