Milivojević, Milan

Link to this page

Authority KeyName Variants
363f0d2b-388d-4714-acf2-ca10996dc392
  • Milivojević, Milan (3)

Author's Bibliography

Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications

Milivojević, Milan; Popović, Aleksandra; Pajić-Lijaković, Ivana; Šoštarić, Ivan; Kolašinac, Stefan; Stevanović, Zora Dajić

(2023)

TY  - JOUR
AU  - Milivojević, Milan
AU  - Popović, Aleksandra
AU  - Pajić-Lijaković, Ivana
AU  - Šoštarić, Ivan
AU  - Kolašinac, Stefan
AU  - Stevanović, Zora Dajić
PY  - 2023
UR  - https://www.mdpi.com/2310-2861/9/8/620
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6422
AB  - Sodium alginate is one of the most interesting and the most investigated and applied biopolymers due to its advantageous properties. Among them, easy, simple, mild, rapid, non-toxic gelation by divalent cations is the most important. In addition, it is abundant, low-cost, eco-friendly, bio-compatible, bio-adhesive, biodegradable, stable, etc. All those properties were systematically considered within this review. Carotenoids are functional components in the human diet with plenty of health benefits. However, their sensitivity to environmental and process stresses, chemical instability, easy oxidation, low water solubility, and bioavailability limit their food and pharmaceutical applications. Encapsulation may help in overcoming these limitations and within this review, the role of alginate-based encapsulation systems in improving the stability and bioavailability of carotenoids is explored. It may be concluded that all alginate-based systems increase carotenoid stability, but only those of micro- and nano-size, as well as emulsion-based, may improve their low bioaccessibility. In addition, the incorporation of other biopolymers may further improve encapsulation system properties. Furthermore, the main techniques for evaluating the encapsulation are briefly considered. This review critically and profoundly explains the role of alginates in improving the encapsulation process of carotenoids, suggesting the best alternatives for those systems. Moreover, it provides a comprehensive cover of recent advances in this field.
T2  - Gels
T2  - Gels
T1  - Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications
IS  - 8
SP  - 620
VL  - 9
DO  - 10.3390/gels9080620
ER  - 
@article{
author = "Milivojević, Milan and Popović, Aleksandra and Pajić-Lijaković, Ivana and Šoštarić, Ivan and Kolašinac, Stefan and Stevanović, Zora Dajić",
year = "2023",
abstract = "Sodium alginate is one of the most interesting and the most investigated and applied biopolymers due to its advantageous properties. Among them, easy, simple, mild, rapid, non-toxic gelation by divalent cations is the most important. In addition, it is abundant, low-cost, eco-friendly, bio-compatible, bio-adhesive, biodegradable, stable, etc. All those properties were systematically considered within this review. Carotenoids are functional components in the human diet with plenty of health benefits. However, their sensitivity to environmental and process stresses, chemical instability, easy oxidation, low water solubility, and bioavailability limit their food and pharmaceutical applications. Encapsulation may help in overcoming these limitations and within this review, the role of alginate-based encapsulation systems in improving the stability and bioavailability of carotenoids is explored. It may be concluded that all alginate-based systems increase carotenoid stability, but only those of micro- and nano-size, as well as emulsion-based, may improve their low bioaccessibility. In addition, the incorporation of other biopolymers may further improve encapsulation system properties. Furthermore, the main techniques for evaluating the encapsulation are briefly considered. This review critically and profoundly explains the role of alginates in improving the encapsulation process of carotenoids, suggesting the best alternatives for those systems. Moreover, it provides a comprehensive cover of recent advances in this field.",
journal = "Gels, Gels",
title = "Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications",
number = "8",
pages = "620",
volume = "9",
doi = "10.3390/gels9080620"
}
Milivojević, M., Popović, A., Pajić-Lijaković, I., Šoštarić, I., Kolašinac, S.,& Stevanović, Z. D.. (2023). Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. in Gels, 9(8), 620.
https://doi.org/10.3390/gels9080620
Milivojević M, Popović A, Pajić-Lijaković I, Šoštarić I, Kolašinac S, Stevanović ZD. Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. in Gels. 2023;9(8):620.
doi:10.3390/gels9080620 .
Milivojević, Milan, Popović, Aleksandra, Pajić-Lijaković, Ivana, Šoštarić, Ivan, Kolašinac, Stefan, Stevanović, Zora Dajić, "Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications" in Gels, 9, no. 8 (2023):620,
https://doi.org/10.3390/gels9080620 . .
5

Matrix resistance stress: A key parameter for immobilized cell growth regulation

Pajić-Lijaković, Ivana; Milivojević, Milan; Lević, Steva; Trifković, Kata; Dajić-Stevanović, Zora; Radošević, Radenko; Nedović, Viktor; Bugarski, Branko

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Pajić-Lijaković, Ivana
AU  - Milivojević, Milan
AU  - Lević, Steva
AU  - Trifković, Kata
AU  - Dajić-Stevanović, Zora
AU  - Radošević, Radenko
AU  - Nedović, Viktor
AU  - Bugarski, Branko
PY  - 2017
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4366
AB  - Microenvironmentally restricted yeast cell growth within Ca-alginate beads with and without entrapped gas bubbles was considered based on experimental data. Cell growth dynamics was described by (1) the dimensionless cell number density as a function of the cell growth time and (2) the cell distribution per bead cross sections. One of the key control parameters for bioprocess optimization is the matrix resistance stress generated during immobilized cell expansion. The dynamics of the increase in matrix stress was described theoretically based on a multi-scale mathematical model. In order to estimate and reduce the accumulation of matrix stress we considered repeated stress relaxation cycles in separate rheological experiments without immobilized cells. The results revealed that the increase in resistance stress within the Ca-alginate matrix was significant (similar to 7 kPa) after 10 repeated cycles, even under a low compression strain of 2% per cycle. The stress could be reduced by using the Ca-alginate matrix with entrapped gas bubbles. The final cell concentration within the beads with entrapped bubbles was 3.3 times higher in comparison with the beads without bubbles. The bubbles could locally amortize the compression effects within the surrounding cell clusters.
PB  - Elsevier Sci Ltd, Oxford
T2  - Process Biochemistry
T1  - Matrix resistance stress: A key parameter for immobilized cell growth regulation
EP  - 43
SP  - 30
VL  - 52
DO  - 10.1016/j.procbio.2016.10.017
ER  - 
@article{
author = "Pajić-Lijaković, Ivana and Milivojević, Milan and Lević, Steva and Trifković, Kata and Dajić-Stevanović, Zora and Radošević, Radenko and Nedović, Viktor and Bugarski, Branko",
year = "2017",
abstract = "Microenvironmentally restricted yeast cell growth within Ca-alginate beads with and without entrapped gas bubbles was considered based on experimental data. Cell growth dynamics was described by (1) the dimensionless cell number density as a function of the cell growth time and (2) the cell distribution per bead cross sections. One of the key control parameters for bioprocess optimization is the matrix resistance stress generated during immobilized cell expansion. The dynamics of the increase in matrix stress was described theoretically based on a multi-scale mathematical model. In order to estimate and reduce the accumulation of matrix stress we considered repeated stress relaxation cycles in separate rheological experiments without immobilized cells. The results revealed that the increase in resistance stress within the Ca-alginate matrix was significant (similar to 7 kPa) after 10 repeated cycles, even under a low compression strain of 2% per cycle. The stress could be reduced by using the Ca-alginate matrix with entrapped gas bubbles. The final cell concentration within the beads with entrapped bubbles was 3.3 times higher in comparison with the beads without bubbles. The bubbles could locally amortize the compression effects within the surrounding cell clusters.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Process Biochemistry",
title = "Matrix resistance stress: A key parameter for immobilized cell growth regulation",
pages = "43-30",
volume = "52",
doi = "10.1016/j.procbio.2016.10.017"
}
Pajić-Lijaković, I., Milivojević, M., Lević, S., Trifković, K., Dajić-Stevanović, Z., Radošević, R., Nedović, V.,& Bugarski, B.. (2017). Matrix resistance stress: A key parameter for immobilized cell growth regulation. in Process Biochemistry
Elsevier Sci Ltd, Oxford., 52, 30-43.
https://doi.org/10.1016/j.procbio.2016.10.017
Pajić-Lijaković I, Milivojević M, Lević S, Trifković K, Dajić-Stevanović Z, Radošević R, Nedović V, Bugarski B. Matrix resistance stress: A key parameter for immobilized cell growth regulation. in Process Biochemistry. 2017;52:30-43.
doi:10.1016/j.procbio.2016.10.017 .
Pajić-Lijaković, Ivana, Milivojević, Milan, Lević, Steva, Trifković, Kata, Dajić-Stevanović, Zora, Radošević, Radenko, Nedović, Viktor, Bugarski, Branko, "Matrix resistance stress: A key parameter for immobilized cell growth regulation" in Process Biochemistry, 52 (2017):30-43,
https://doi.org/10.1016/j.procbio.2016.10.017 . .
9
4
8

Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads

Lević, Steva; Djordjević, Verica B.; Rajić, Nevenka; Milivojević, Milan; Bugarski, Branko; Nedović, Viktor

(Springer International Publishing Ag, Cham, 2013)

TY  - JOUR
AU  - Lević, Steva
AU  - Djordjević, Verica B.
AU  - Rajić, Nevenka
AU  - Milivojević, Milan
AU  - Bugarski, Branko
AU  - Nedović, Viktor
PY  - 2013
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/3310
AB  - Electrostatic extrusion was applied to the encapsulation of 3-ethoxy-4-hydroxybenzaldehyde (ethyl vanillin) in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. The calcium alginate/poly(vinyl alcohol) hydrogel spheres were formed after contact with the cross-linker solution of calcium chloride, followed by the freeze-thaw method for poly(vinyl alcohol) gel formation. The entrapment of aroma in beads was investigated by FTIR and thermal analysis (thermogravimetry/differential thermal gravimetry; TGA/DTG). The mass loss in the temperature range of 150-300A degrees C is related to degradation of the matrix and the release of ethyl vanillin. According to the DTG curve, the release of ethyl vanillin occurs at about 260A degrees C. TGA measurements of the stored samples confirmed that formulations were stable for a period of one month. FTIR analysis provides no evidence for chemical interactions between flavour and alginate that would alter the nature of the functional groups in the flavour compound.
PB  - Springer International Publishing Ag, Cham
T2  - Chemical Papers
T1  - Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
EP  - 228
IS  - 2
SP  - 221
VL  - 67
DO  - 10.2478/s11696-012-0260-1
ER  - 
@article{
author = "Lević, Steva and Djordjević, Verica B. and Rajić, Nevenka and Milivojević, Milan and Bugarski, Branko and Nedović, Viktor",
year = "2013",
abstract = "Electrostatic extrusion was applied to the encapsulation of 3-ethoxy-4-hydroxybenzaldehyde (ethyl vanillin) in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. The calcium alginate/poly(vinyl alcohol) hydrogel spheres were formed after contact with the cross-linker solution of calcium chloride, followed by the freeze-thaw method for poly(vinyl alcohol) gel formation. The entrapment of aroma in beads was investigated by FTIR and thermal analysis (thermogravimetry/differential thermal gravimetry; TGA/DTG). The mass loss in the temperature range of 150-300A degrees C is related to degradation of the matrix and the release of ethyl vanillin. According to the DTG curve, the release of ethyl vanillin occurs at about 260A degrees C. TGA measurements of the stored samples confirmed that formulations were stable for a period of one month. FTIR analysis provides no evidence for chemical interactions between flavour and alginate that would alter the nature of the functional groups in the flavour compound.",
publisher = "Springer International Publishing Ag, Cham",
journal = "Chemical Papers",
title = "Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads",
pages = "228-221",
number = "2",
volume = "67",
doi = "10.2478/s11696-012-0260-1"
}
Lević, S., Djordjević, V. B., Rajić, N., Milivojević, M., Bugarski, B.,& Nedović, V.. (2013). Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. in Chemical Papers
Springer International Publishing Ag, Cham., 67(2), 221-228.
https://doi.org/10.2478/s11696-012-0260-1
Lević S, Djordjević VB, Rajić N, Milivojević M, Bugarski B, Nedović V. Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. in Chemical Papers. 2013;67(2):221-228.
doi:10.2478/s11696-012-0260-1 .
Lević, Steva, Djordjević, Verica B., Rajić, Nevenka, Milivojević, Milan, Bugarski, Branko, Nedović, Viktor, "Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads" in Chemical Papers, 67, no. 2 (2013):221-228,
https://doi.org/10.2478/s11696-012-0260-1 . .
32
18
28