Perendija, Jovana

Link to this page

Authority KeyName Variants
0a530525-0fbc-4bbe-9a47-b6d6b0e6ea22
  • Perendija, Jovana (3)
Projects
Investigation of intermetallics and semiconductors and possible application in renewable energy sources Directed synthesis, structure and properties of multifunctional materials
Geologic and ecotoxicologic research in identification of geopathogen zones of toxic elements in drinking water reservoirs- research into methods and procedures for reduction of biochemical anomalies bilateral cooperation between Serbia and France [4510339/2016/09/03]
Bilateral cooperation between Serbia and France, No. 4510339/2016/09/03 “Inteligent econanomaterials and nanocomposites” Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry)
National Aeronautics and Space Administration project [NASA: NNX09AV07A] National Science FoundationNational Science Foundation (NSF)
National Science Foundation, North Carolina State University, Project No. HRD-1345219 North Carolina State University [HRD-1345219, DMR-1523617]
United States National Aeronautics and Space Administration (NASA), Grant NNX09AV07A United States National Science Foundation (NSF) / Partnerships for Research and Education in Materials (PREM), Grant 1523617

Author's Bibliography

Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent

Perendija, Jovana; Veličković, Zlate S.; Dražević, Ljubinka; Stojiljković, Ivana; Milčić, Miloš; Milosavljević, Milutin M.; Marinković, Aleksandar D.; Pavlović, Vladimir

(International Institute for the Science of Sintering (IISS), 2021)

TY  - JOUR
AU  - Perendija, Jovana
AU  - Veličković, Zlate S.
AU  - Dražević, Ljubinka
AU  - Stojiljković, Ivana
AU  - Milčić, Miloš
AU  - Milosavljević, Milutin M.
AU  - Marinković, Aleksandar D.
AU  - Pavlović, Vladimir
PY  - 2021
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5957
AB  - Magnetite (MG) modified cellulose membrane (Cell-MG), obtained by reaction of 3-aminosilane and subsequently with diethylenetriaminepentaacetic acid dianhydride functionalized waste Cell fibers (Cell-NH2 and Cell-DTPA, respectively), and amino-modified diatomite was used for Azoxystrobin and Iprodione removal from water. Cell-MG membrane was structurally and morphologically characterized using FT-IR and FE-SEM techniques. The influences of operational parameters, i.e. pH, contact time, temperature, and the mass of adsorbent on adsorption and kinetics were studied in a batch system. The calculated capacities of 35.32 and 30.16 mg g-1 for Azoxystrobin and Iprodione, respectively, were obtained from non-linear Langmuir model fitting. Weber-Morris model fitting indicates the main contribution of intra-particle diffusion to overall mass transport resistance. Thermodynamic data indicate spontaneous and endothermic adsorption. The reusability of adsorbent and results from wastewater purification showed that Cell-MG could be used as general-purpose adsorbent. The adsorbent/adsorbate surface interaction was considered from the results obtained using density functional theory (DFT) and calculation of molecular electrostatic potential (MEP). Thus, a better understanding of the relation between the adsorption performances and contribution of non-specific and specific interactions to adsorption performances and design of novel adsorbent with improved properties was deduced.
PB  - International Institute for the Science of Sintering (IISS)
T2  - Science of Sintering
T1  - Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent
EP  - 378
IS  - 3
SP  - 355
VL  - 53
DO  - 10.2298/SOS2103355P
ER  - 
@article{
author = "Perendija, Jovana and Veličković, Zlate S. and Dražević, Ljubinka and Stojiljković, Ivana and Milčić, Miloš and Milosavljević, Milutin M. and Marinković, Aleksandar D. and Pavlović, Vladimir",
year = "2021",
abstract = "Magnetite (MG) modified cellulose membrane (Cell-MG), obtained by reaction of 3-aminosilane and subsequently with diethylenetriaminepentaacetic acid dianhydride functionalized waste Cell fibers (Cell-NH2 and Cell-DTPA, respectively), and amino-modified diatomite was used for Azoxystrobin and Iprodione removal from water. Cell-MG membrane was structurally and morphologically characterized using FT-IR and FE-SEM techniques. The influences of operational parameters, i.e. pH, contact time, temperature, and the mass of adsorbent on adsorption and kinetics were studied in a batch system. The calculated capacities of 35.32 and 30.16 mg g-1 for Azoxystrobin and Iprodione, respectively, were obtained from non-linear Langmuir model fitting. Weber-Morris model fitting indicates the main contribution of intra-particle diffusion to overall mass transport resistance. Thermodynamic data indicate spontaneous and endothermic adsorption. The reusability of adsorbent and results from wastewater purification showed that Cell-MG could be used as general-purpose adsorbent. The adsorbent/adsorbate surface interaction was considered from the results obtained using density functional theory (DFT) and calculation of molecular electrostatic potential (MEP). Thus, a better understanding of the relation between the adsorption performances and contribution of non-specific and specific interactions to adsorption performances and design of novel adsorbent with improved properties was deduced.",
publisher = "International Institute for the Science of Sintering (IISS)",
journal = "Science of Sintering",
title = "Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent",
pages = "378-355",
number = "3",
volume = "53",
doi = "10.2298/SOS2103355P"
}
Perendija, J., Veličković, Z. S., Dražević, L., Stojiljković, I., Milčić, M., Milosavljević, M. M., Marinković, A. D.,& Pavlović, V.. (2021). Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent. in Science of Sintering
International Institute for the Science of Sintering (IISS)., 53(3), 355-378.
https://doi.org/10.2298/SOS2103355P
Perendija J, Veličković ZS, Dražević L, Stojiljković I, Milčić M, Milosavljević MM, Marinković AD, Pavlović V. Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent. in Science of Sintering. 2021;53(3):355-378.
doi:10.2298/SOS2103355P .
Perendija, Jovana, Veličković, Zlate S., Dražević, Ljubinka, Stojiljković, Ivana, Milčić, Miloš, Milosavljević, Milutin M., Marinković, Aleksandar D., Pavlović, Vladimir, "Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent" in Science of Sintering, 53, no. 3 (2021):355-378,
https://doi.org/10.2298/SOS2103355P . .
4
3

Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal

Rusmirović, Jelena D.; Obradović, Nina; Perendija, Jovana; Umićević, Ana B.; Kapidzić, Ana; Vlahović, Branislav; Pavlović, Vera P.; Marinković, Aleksandar D.; Pavlović, Vladimir

(Springer Heidelberg, Heidelberg, 2019)

TY  - JOUR
AU  - Rusmirović, Jelena D.
AU  - Obradović, Nina
AU  - Perendija, Jovana
AU  - Umićević, Ana B.
AU  - Kapidzić, Ana
AU  - Vlahović, Branislav
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar D.
AU  - Pavlović, Vladimir
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5118
AB  - Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL--APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mossbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456mgg(-1) for WL--APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382mgg(-1) for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL--APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL--APS.
PB  - Springer Heidelberg, Heidelberg
T2  - Environmental Science and Pollution Research
T1  - Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal
EP  - 12398
IS  - 12
SP  - 12379
VL  - 26
DO  - 10.1007/s11356-019-04625-0
ER  - 
@article{
author = "Rusmirović, Jelena D. and Obradović, Nina and Perendija, Jovana and Umićević, Ana B. and Kapidzić, Ana and Vlahović, Branislav and Pavlović, Vera P. and Marinković, Aleksandar D. and Pavlović, Vladimir",
year = "2019",
abstract = "Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL--APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mossbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456mgg(-1) for WL--APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382mgg(-1) for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL--APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL--APS.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Environmental Science and Pollution Research",
title = "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal",
pages = "12398-12379",
number = "12",
volume = "26",
doi = "10.1007/s11356-019-04625-0"
}
Rusmirović, J. D., Obradović, N., Perendija, J., Umićević, A. B., Kapidzić, A., Vlahović, B., Pavlović, V. P., Marinković, A. D.,& Pavlović, V.. (2019). Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research
Springer Heidelberg, Heidelberg., 26(12), 12379-12398.
https://doi.org/10.1007/s11356-019-04625-0
Rusmirović JD, Obradović N, Perendija J, Umićević AB, Kapidzić A, Vlahović B, Pavlović VP, Marinković AD, Pavlović V. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research. 2019;26(12):12379-12398.
doi:10.1007/s11356-019-04625-0 .
Rusmirović, Jelena D., Obradović, Nina, Perendija, Jovana, Umićević, Ana B., Kapidzić, Ana, Vlahović, Branislav, Pavlović, Vera P., Marinković, Aleksandar D., Pavlović, Vladimir, "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal" in Environmental Science and Pollution Research, 26, no. 12 (2019):12379-12398,
https://doi.org/10.1007/s11356-019-04625-0 . .
1
11
6
13

Supplementary material for the article: Rusmirović, J.D., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V., Marinković, A.D., Pavlović, V.B., 2019. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. Environ Sci Pollut Res 26, 12379–12398. https://doi.org/10.1007/s11356-019-04625-0

Rusmirović, Jelena; Obradović, Nina; Perendija, Jovana; Umićević, Ana; Kapidžić, Ana; Vlahović, Branislav; Pavlović, Vera P.; Marinković, Aleksandar D.; Pavlović, Vladimir B.

(Springer, 2019)

TY  - DATA
AU  - Rusmirović, Jelena
AU  - Obradović, Nina
AU  - Perendija, Jovana
AU  - Umićević, Ana
AU  - Kapidžić, Ana
AU  - Vlahović, Branislav
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar D.
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/5805
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5741
PB  - Springer
T2  - Environmental Science and Pollution Research
T1  - Supplementary material for the article: Rusmirović, J.D., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V., Marinković, A.D., Pavlović, V.B., 2019. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. Environ Sci Pollut Res 26, 12379–12398. https://doi.org/10.1007/s11356-019-04625-0
UR  - https://hdl.handle.net/21.15107/rcub_dais_5805
ER  - 
@misc{
author = "Rusmirović, Jelena and Obradović, Nina and Perendija, Jovana and Umićević, Ana and Kapidžić, Ana and Vlahović, Branislav and Pavlović, Vera P. and Marinković, Aleksandar D. and Pavlović, Vladimir B.",
year = "2019",
publisher = "Springer",
journal = "Environmental Science and Pollution Research",
title = "Supplementary material for the article: Rusmirović, J.D., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V., Marinković, A.D., Pavlović, V.B., 2019. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. Environ Sci Pollut Res 26, 12379–12398. https://doi.org/10.1007/s11356-019-04625-0",
url = "https://hdl.handle.net/21.15107/rcub_dais_5805"
}
Rusmirović, J., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V. P., Marinković, A. D.,& Pavlović, V. B.. (2019). Supplementary material for the article: Rusmirović, J.D., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V., Marinković, A.D., Pavlović, V.B., 2019. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. Environ Sci Pollut Res 26, 12379–12398. https://doi.org/10.1007/s11356-019-04625-0. in Environmental Science and Pollution Research
Springer..
https://hdl.handle.net/21.15107/rcub_dais_5805
Rusmirović J, Obradović N, Perendija J, Umićević A, Kapidžić A, Vlahović B, Pavlović VP, Marinković AD, Pavlović VB. Supplementary material for the article: Rusmirović, J.D., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V., Marinković, A.D., Pavlović, V.B., 2019. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. Environ Sci Pollut Res 26, 12379–12398. https://doi.org/10.1007/s11356-019-04625-0. in Environmental Science and Pollution Research. 2019;.
https://hdl.handle.net/21.15107/rcub_dais_5805 .
Rusmirović, Jelena, Obradović, Nina, Perendija, Jovana, Umićević, Ana, Kapidžić, Ana, Vlahović, Branislav, Pavlović, Vera P., Marinković, Aleksandar D., Pavlović, Vladimir B., "Supplementary material for the article: Rusmirović, J.D., Obradović, N., Perendija, J., Umićević, A., Kapidžić, A., Vlahović, B., Pavlović, V., Marinković, A.D., Pavlović, V.B., 2019. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. Environ Sci Pollut Res 26, 12379–12398. https://doi.org/10.1007/s11356-019-04625-0" in Environmental Science and Pollution Research (2019),
https://hdl.handle.net/21.15107/rcub_dais_5805 .