Tadić, Nenad

Link to this page

Authority KeyName Variants
ebb4cfa7-aab4-479e-a8f8-0ad6fa332c17
  • Tadić, Nenad (1)
Projects

Author's Bibliography

Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics

Živojinović, Jelena; Kosanović, Darko; Blagojević, Vladimir A.; Pavlović, Vera P.; Tadić, Nenad; Vlahović, Branislav; Pavlović, Vladimir B.

(2022)

TY  - JOUR
AU  - Živojinović, Jelena
AU  - Kosanović, Darko
AU  - Blagojević, Vladimir A.
AU  - Pavlović, Vera P.
AU  - Tadić, Nenad
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2022
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6243
AB  - In this study, microstructure evolution and dielectric properties of SrTiO3 ceramic have been investigated, whereby mechanical activation of SrTiO3 powders was used to modify the functional properties of ceramic materials. Microstructural SEM analysis of SrTiO3 ceramics showed that the increase in mechanical activation time results in less porous samples. Raman spectroscopy indicated changes in the broadening and asymmetry of the TO2 mode with a change in the time of mechanical activation. TO2 mode showed a Fano asymmetry due to its interaction with polarization fluctuations in polar micro-regions, which are a consequence of the presence of oxygen vacancies caused by activation. The maximum value of dielectric permittivity was observed in the sample activated for 10 min. Also, the sample activated for 10 min exhibits relatively low values of loss tangent, compared to the other mechanically activated samples, providing the best overall dielectric performance compared to other samples. © 2022 Authors. Published by association for ETRAN Society.
T2  - Science of Sintering
T2  - Science of Sintering
T1  - Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics
EP  - 404
IS  - 4
SP  - 401
VL  - 54
DO  - 10.2298/SOS2204401Z
ER  - 
@article{
author = "Živojinović, Jelena and Kosanović, Darko and Blagojević, Vladimir A. and Pavlović, Vera P. and Tadić, Nenad and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2022",
abstract = "In this study, microstructure evolution and dielectric properties of SrTiO3 ceramic have been investigated, whereby mechanical activation of SrTiO3 powders was used to modify the functional properties of ceramic materials. Microstructural SEM analysis of SrTiO3 ceramics showed that the increase in mechanical activation time results in less porous samples. Raman spectroscopy indicated changes in the broadening and asymmetry of the TO2 mode with a change in the time of mechanical activation. TO2 mode showed a Fano asymmetry due to its interaction with polarization fluctuations in polar micro-regions, which are a consequence of the presence of oxygen vacancies caused by activation. The maximum value of dielectric permittivity was observed in the sample activated for 10 min. Also, the sample activated for 10 min exhibits relatively low values of loss tangent, compared to the other mechanically activated samples, providing the best overall dielectric performance compared to other samples. © 2022 Authors. Published by association for ETRAN Society.",
journal = "Science of Sintering, Science of Sintering",
title = "Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics",
pages = "404-401",
number = "4",
volume = "54",
doi = "10.2298/SOS2204401Z"
}
Živojinović, J., Kosanović, D., Blagojević, V. A., Pavlović, V. P., Tadić, N., Vlahović, B.,& Pavlović, V. B.. (2022). Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics. in Science of Sintering, 54(4), 401-404.
https://doi.org/10.2298/SOS2204401Z
Živojinović J, Kosanović D, Blagojević VA, Pavlović VP, Tadić N, Vlahović B, Pavlović VB. Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics. in Science of Sintering. 2022;54(4):401-404.
doi:10.2298/SOS2204401Z .
Živojinović, Jelena, Kosanović, Darko, Blagojević, Vladimir A., Pavlović, Vera P., Tadić, Nenad, Vlahović, Branislav, Pavlović, Vladimir B., "Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics" in Science of Sintering, 54, no. 4 (2022):401-404,
https://doi.org/10.2298/SOS2204401Z . .
3