McPherson, Michael M.

Link to this page

Authority KeyName Variants
d2ae93fa-c01a-4bb7-bc44-b61ce6ecc344
  • McPherson, Michael M. (1)
Projects

Author's Bibliography

PVDF-HFP/NKBT composite dielectrics: Perovskite particles induce the appearance of an additional dielectric relaxation process in ferroelectric polymer matrix

Pavlović, Vera P.; Tošić, Dragana; Dojćilović, Radovan; Dudić, Duško; Dramićanin, Miroslav D.; Medić, Mina; McPherson, Michael M.; Pavlović, Vladimir; Vlahović, Branislav; Djoković, Vladimir

(Elsevier Ltd, 2021)

TY  - JOUR
AU  - Pavlović, Vera P.
AU  - Tošić, Dragana
AU  - Dojćilović, Radovan
AU  - Dudić, Duško
AU  - Dramićanin, Miroslav D.
AU  - Medić, Mina
AU  - McPherson, Michael M.
AU  - Pavlović, Vladimir
AU  - Vlahović, Branislav
AU  - Djoković, Vladimir
PY  - 2021
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5808
AB  - Na0.25K0.25Bi0.5TiO3 (NKBT) perovskite particles are synthesized by solid-state method and used as a filler for polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) co-polymer. X-ray diffraction analysis of NKBT powders shows that the particles have a rhombohedral perovskite crystal structure (R3c symmetry). Raman spectroscopy reveals that the co-polymer crystallizes predominantly into the mixture of polar β- and γ-crystals, while there is also a contribution of the non-polar α-crystal phase. The introduction of the NKBT into the PVDF-HFP results with an increase in effective dielectric permittivity and this effect depends on the inorganic content in the composite. The most interesting result of the present study is that the introduction of NKBT particles induces the appearance of an additional transition peak in the dielectric spectra of the co-polymer matrix. At the fixed frequency of ~2 kHz, the observed process appears at ~10 °C (about 45° above the glass transition temperature) and its magnitude strongly depends on the amount of the NKBT in the composite. Dielectric spectroscopy measurements of the composites are carried out in the wide range of frequencies (from 0.1 Hz to 1 MHz) and temperatures (from −100 to 100 °C). They reveal that the novel process can be clearly distinguished in the frequency range between 160 Hz and ~50 kHz.
PB  - Elsevier Ltd
T2  - Polymer Testing
T1  - PVDF-HFP/NKBT composite dielectrics: Perovskite particles induce the appearance of an additional dielectric relaxation process in ferroelectric polymer matrix
SP  - 107093
VL  - 96
DO  - 10.1016/j.polymertesting.2021.107093
ER  - 
@article{
author = "Pavlović, Vera P. and Tošić, Dragana and Dojćilović, Radovan and Dudić, Duško and Dramićanin, Miroslav D. and Medić, Mina and McPherson, Michael M. and Pavlović, Vladimir and Vlahović, Branislav and Djoković, Vladimir",
year = "2021",
abstract = "Na0.25K0.25Bi0.5TiO3 (NKBT) perovskite particles are synthesized by solid-state method and used as a filler for polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) co-polymer. X-ray diffraction analysis of NKBT powders shows that the particles have a rhombohedral perovskite crystal structure (R3c symmetry). Raman spectroscopy reveals that the co-polymer crystallizes predominantly into the mixture of polar β- and γ-crystals, while there is also a contribution of the non-polar α-crystal phase. The introduction of the NKBT into the PVDF-HFP results with an increase in effective dielectric permittivity and this effect depends on the inorganic content in the composite. The most interesting result of the present study is that the introduction of NKBT particles induces the appearance of an additional transition peak in the dielectric spectra of the co-polymer matrix. At the fixed frequency of ~2 kHz, the observed process appears at ~10 °C (about 45° above the glass transition temperature) and its magnitude strongly depends on the amount of the NKBT in the composite. Dielectric spectroscopy measurements of the composites are carried out in the wide range of frequencies (from 0.1 Hz to 1 MHz) and temperatures (from −100 to 100 °C). They reveal that the novel process can be clearly distinguished in the frequency range between 160 Hz and ~50 kHz.",
publisher = "Elsevier Ltd",
journal = "Polymer Testing",
title = "PVDF-HFP/NKBT composite dielectrics: Perovskite particles induce the appearance of an additional dielectric relaxation process in ferroelectric polymer matrix",
pages = "107093",
volume = "96",
doi = "10.1016/j.polymertesting.2021.107093"
}
Pavlović, V. P., Tošić, D., Dojćilović, R., Dudić, D., Dramićanin, M. D., Medić, M., McPherson, M. M., Pavlović, V., Vlahović, B.,& Djoković, V.. (2021). PVDF-HFP/NKBT composite dielectrics: Perovskite particles induce the appearance of an additional dielectric relaxation process in ferroelectric polymer matrix. in Polymer Testing
Elsevier Ltd., 96, 107093.
https://doi.org/10.1016/j.polymertesting.2021.107093
Pavlović VP, Tošić D, Dojćilović R, Dudić D, Dramićanin MD, Medić M, McPherson MM, Pavlović V, Vlahović B, Djoković V. PVDF-HFP/NKBT composite dielectrics: Perovskite particles induce the appearance of an additional dielectric relaxation process in ferroelectric polymer matrix. in Polymer Testing. 2021;96:107093.
doi:10.1016/j.polymertesting.2021.107093 .
Pavlović, Vera P., Tošić, Dragana, Dojćilović, Radovan, Dudić, Duško, Dramićanin, Miroslav D., Medić, Mina, McPherson, Michael M., Pavlović, Vladimir, Vlahović, Branislav, Djoković, Vladimir, "PVDF-HFP/NKBT composite dielectrics: Perovskite particles induce the appearance of an additional dielectric relaxation process in ferroelectric polymer matrix" in Polymer Testing, 96 (2021):107093,
https://doi.org/10.1016/j.polymertesting.2021.107093 . .
17
2
16