Bjelajac, Andjelika

Link to this page

Authority KeyName Variants
0bb67414-1aa7-4a7e-b77e-5bb7ce4efa0f
  • Bjelajac, Andjelika (2)
Projects

Author's Bibliography

Structure and photocatalytic properties of sintered TiO2 nanotube arrays

Vujancević, Jelena; Bjelajac, Andjelika; Cirković, Jovana; Pavlović, Vera P.; Horvath, Endre; Forro, Laszlo; Vlahović, Branislav; Mitrić, Miodrag; Janacković, Djordje; Pavlović, Vladimir

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2018)

TY  - JOUR
AU  - Vujancević, Jelena
AU  - Bjelajac, Andjelika
AU  - Cirković, Jovana
AU  - Pavlović, Vera P.
AU  - Horvath, Endre
AU  - Forro, Laszlo
AU  - Vlahović, Branislav
AU  - Mitrić, Miodrag
AU  - Janacković, Djordje
AU  - Pavlović, Vladimir
PY  - 2018
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4714
AB  - One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Structure and photocatalytic properties of sintered TiO2 nanotube arrays
EP  - 50
IS  - 1
SP  - 39
VL  - 50
DO  - 10.2298/SOS1801039V
ER  - 
@article{
author = "Vujancević, Jelena and Bjelajac, Andjelika and Cirković, Jovana and Pavlović, Vera P. and Horvath, Endre and Forro, Laszlo and Vlahović, Branislav and Mitrić, Miodrag and Janacković, Djordje and Pavlović, Vladimir",
year = "2018",
abstract = "One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Structure and photocatalytic properties of sintered TiO2 nanotube arrays",
pages = "50-39",
number = "1",
volume = "50",
doi = "10.2298/SOS1801039V"
}
Vujancević, J., Bjelajac, A., Cirković, J., Pavlović, V. P., Horvath, E., Forro, L., Vlahović, B., Mitrić, M., Janacković, D.,& Pavlović, V.. (2018). Structure and photocatalytic properties of sintered TiO2 nanotube arrays. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 50(1), 39-50.
https://doi.org/10.2298/SOS1801039V
Vujancević J, Bjelajac A, Cirković J, Pavlović VP, Horvath E, Forro L, Vlahović B, Mitrić M, Janacković D, Pavlović V. Structure and photocatalytic properties of sintered TiO2 nanotube arrays. in Science of Sintering. 2018;50(1):39-50.
doi:10.2298/SOS1801039V .
Vujancević, Jelena, Bjelajac, Andjelika, Cirković, Jovana, Pavlović, Vera P., Horvath, Endre, Forro, Laszlo, Vlahović, Branislav, Mitrić, Miodrag, Janacković, Djordje, Pavlović, Vladimir, "Structure and photocatalytic properties of sintered TiO2 nanotube arrays" in Science of Sintering, 50, no. 1 (2018):39-50,
https://doi.org/10.2298/SOS1801039V . .
8
9
11

CdS quantum dots sensitized TiO2 nanotubes by matrix assisted pulsed laser evaporation method

Bjelajac, Andjelika; Petrović, Rada; Socol, Gabriel; Mihailescu, Ion N.; Enculescu, Monica; Grurriezescu, Valentina; Pavlović, Vladimir; Janacković, Djordje

(Elsevier Sci Ltd, Oxford, 2016)

TY  - JOUR
AU  - Bjelajac, Andjelika
AU  - Petrović, Rada
AU  - Socol, Gabriel
AU  - Mihailescu, Ion N.
AU  - Enculescu, Monica
AU  - Grurriezescu, Valentina
AU  - Pavlović, Vladimir
AU  - Janacković, Djordje
PY  - 2016
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4204
AB  - Within this study a matrix assisted pulsed laser evaporation technique was employed for deposition of CdS quantum dots onto TiO2 nanotubes. The number of laser pulses and laser fluence were varied to control the amount of CdS deposit. TiO2 nanotubes were obtained via anodization technique of sputtered Ti film on FTO glass. For CdS synthesis, dimethyl sulfoxide (DMSO) was used as a matrix of the target which absorbs radiation of KrF* laser (lambda=248 nm), then evaporates enabling the deposition of CdS quantum dots dispersed into DMSO. This study showed that the size of the CdS nanoparticles synthetized in DMSO can be controlled with microwave treatment that causes the release of S2- ions from DMSO for creation of CdS nuclei and/or their further growth. The optimization of CdS synthesis is achieved by varying the duration of the microwave treatment and the microwave power. The obtained TiO2 photo anodes with different amounts of CdS were assembled with PbS cathodes and the polysulfide electrolyte was injected between. The influence of amount of CdS deposit and the microwave treatment of CdS on photovoltaic performance of the fabricated solar cells were analyzed under AM1.5. The results showed that microwave treatment produced a Cd(S)-DMSO complex onto CdS nanoparticles which led to a higher current density of the solar cells obtained using microwave treated CdS target. Also, the increase of CdS content by increasing the number of laser pulses provided the enhance of I-V characteristics of the solar cells.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - CdS quantum dots sensitized TiO2 nanotubes by matrix assisted pulsed laser evaporation method
EP  - 9017
IS  - 7
SP  - 9011
VL  - 42
DO  - 10.1016/j.ceramint.2016.02.159
ER  - 
@article{
author = "Bjelajac, Andjelika and Petrović, Rada and Socol, Gabriel and Mihailescu, Ion N. and Enculescu, Monica and Grurriezescu, Valentina and Pavlović, Vladimir and Janacković, Djordje",
year = "2016",
abstract = "Within this study a matrix assisted pulsed laser evaporation technique was employed for deposition of CdS quantum dots onto TiO2 nanotubes. The number of laser pulses and laser fluence were varied to control the amount of CdS deposit. TiO2 nanotubes were obtained via anodization technique of sputtered Ti film on FTO glass. For CdS synthesis, dimethyl sulfoxide (DMSO) was used as a matrix of the target which absorbs radiation of KrF* laser (lambda=248 nm), then evaporates enabling the deposition of CdS quantum dots dispersed into DMSO. This study showed that the size of the CdS nanoparticles synthetized in DMSO can be controlled with microwave treatment that causes the release of S2- ions from DMSO for creation of CdS nuclei and/or their further growth. The optimization of CdS synthesis is achieved by varying the duration of the microwave treatment and the microwave power. The obtained TiO2 photo anodes with different amounts of CdS were assembled with PbS cathodes and the polysulfide electrolyte was injected between. The influence of amount of CdS deposit and the microwave treatment of CdS on photovoltaic performance of the fabricated solar cells were analyzed under AM1.5. The results showed that microwave treatment produced a Cd(S)-DMSO complex onto CdS nanoparticles which led to a higher current density of the solar cells obtained using microwave treated CdS target. Also, the increase of CdS content by increasing the number of laser pulses provided the enhance of I-V characteristics of the solar cells.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "CdS quantum dots sensitized TiO2 nanotubes by matrix assisted pulsed laser evaporation method",
pages = "9017-9011",
number = "7",
volume = "42",
doi = "10.1016/j.ceramint.2016.02.159"
}
Bjelajac, A., Petrović, R., Socol, G., Mihailescu, I. N., Enculescu, M., Grurriezescu, V., Pavlović, V.,& Janacković, D.. (2016). CdS quantum dots sensitized TiO2 nanotubes by matrix assisted pulsed laser evaporation method. in Ceramics International
Elsevier Sci Ltd, Oxford., 42(7), 9011-9017.
https://doi.org/10.1016/j.ceramint.2016.02.159
Bjelajac A, Petrović R, Socol G, Mihailescu IN, Enculescu M, Grurriezescu V, Pavlović V, Janacković D. CdS quantum dots sensitized TiO2 nanotubes by matrix assisted pulsed laser evaporation method. in Ceramics International. 2016;42(7):9011-9017.
doi:10.1016/j.ceramint.2016.02.159 .
Bjelajac, Andjelika, Petrović, Rada, Socol, Gabriel, Mihailescu, Ion N., Enculescu, Monica, Grurriezescu, Valentina, Pavlović, Vladimir, Janacković, Djordje, "CdS quantum dots sensitized TiO2 nanotubes by matrix assisted pulsed laser evaporation method" in Ceramics International, 42, no. 7 (2016):9011-9017,
https://doi.org/10.1016/j.ceramint.2016.02.159 . .
8
8
8