Kapidzić, Ana

Link to this page

Authority KeyName Variants
c93615f4-936e-43cf-9f14-04029ef6c7b2
  • Kapidzić, Ana (1)
Projects

Author's Bibliography

Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal

Rusmirović, Jelena D.; Obradović, Nina; Perendija, Jovana; Umićević, Ana B.; Kapidzić, Ana; Vlahović, Branislav; Pavlović, Vera P.; Marinković, Aleksandar D.; Pavlović, Vladimir

(Springer Heidelberg, Heidelberg, 2019)

TY  - JOUR
AU  - Rusmirović, Jelena D.
AU  - Obradović, Nina
AU  - Perendija, Jovana
AU  - Umićević, Ana B.
AU  - Kapidzić, Ana
AU  - Vlahović, Branislav
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar D.
AU  - Pavlović, Vladimir
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5118
AB  - Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL--APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mossbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456mgg(-1) for WL--APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382mgg(-1) for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL--APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL--APS.
PB  - Springer Heidelberg, Heidelberg
T2  - Environmental Science and Pollution Research
T1  - Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal
EP  - 12398
IS  - 12
SP  - 12379
VL  - 26
DO  - 10.1007/s11356-019-04625-0
ER  - 
@article{
author = "Rusmirović, Jelena D. and Obradović, Nina and Perendija, Jovana and Umićević, Ana B. and Kapidzić, Ana and Vlahović, Branislav and Pavlović, Vera P. and Marinković, Aleksandar D. and Pavlović, Vladimir",
year = "2019",
abstract = "Iron oxide, in the form of magnetite (MG)-functionalized porous wollastonite (WL), was used as an adsorbent for heavy metal ions (cadmium and nickel) and oxyanions (chromate and phosphate) removal from water. The porous WL was synthesized from calcium carbonate and siloxane by controlled sintering process using low molecular weight submicrosized poly(methyl methacrylate) as a pore-forming agent. The precipitation of MG nanoparticles was carried out directly by a polyol-medium solvothermal method or via branched amino/carboxylic acid cross-linker by solvent/nonsolvent method producing WL/MG and WL--APS/MG adsorbents, respectively. The structure/properties of MG functionalized WL was confirmed by applying FTIR, Raman, XRD, Mossbauer, and SEM analysis. Higher adsorption capacities of 73.126, 66.144, 64.168, and 63.456mgg(-1) for WL--APS/MG in relation to WL/MG of 55.450, 52.019, 48.132, and 47.382mgg(-1) for Cd2+, Ni2+, phosphate, and chromate, respectively, were obtained using nonlinear Langmuir model fitting. Adsorption phenomena were analyzed using monolayer statistical physics model for single adsorption with one energy. Kinetic study showed exceptionally higher pseudo-second-order rate constants for WL--APS/MG, e.g., 1.17-13.4 times, with respect to WL/MG indicating importance of both WL surface modification and controllable precipitation of MG on WL--APS.",
publisher = "Springer Heidelberg, Heidelberg",
journal = "Environmental Science and Pollution Research",
title = "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal",
pages = "12398-12379",
number = "12",
volume = "26",
doi = "10.1007/s11356-019-04625-0"
}
Rusmirović, J. D., Obradović, N., Perendija, J., Umićević, A. B., Kapidzić, A., Vlahović, B., Pavlović, V. P., Marinković, A. D.,& Pavlović, V.. (2019). Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research
Springer Heidelberg, Heidelberg., 26(12), 12379-12398.
https://doi.org/10.1007/s11356-019-04625-0
Rusmirović JD, Obradović N, Perendija J, Umićević AB, Kapidzić A, Vlahović B, Pavlović VP, Marinković AD, Pavlović V. Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal. in Environmental Science and Pollution Research. 2019;26(12):12379-12398.
doi:10.1007/s11356-019-04625-0 .
Rusmirović, Jelena D., Obradović, Nina, Perendija, Jovana, Umićević, Ana B., Kapidzić, Ana, Vlahović, Branislav, Pavlović, Vera P., Marinković, Aleksandar D., Pavlović, Vladimir, "Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal" in Environmental Science and Pollution Research, 26, no. 12 (2019):12379-12398,
https://doi.org/10.1007/s11356-019-04625-0 . .
1
11
6
13