Araskov, Jovana

Link to this page

Authority KeyName Variants
orcid::0000-0001-5352-7752
  • Araskov, Jovana (2)
Projects

Author's Bibliography

Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification

Bjelogrlić, Snežana; Todorović, Tamara R.; Kojić, Milan; Sencanski, Milan; Nikolić, Milan; Visnjevac, Aleksandar; Araskov, Jovana; Miljković, Marija; Muller, Christian D.; Filipović, Nenad

(Elsevier Science Inc, New York, 2019)

TY  - JOUR
AU  - Bjelogrlić, Snežana
AU  - Todorović, Tamara R.
AU  - Kojić, Milan
AU  - Sencanski, Milan
AU  - Nikolić, Milan
AU  - Visnjevac, Aleksandar
AU  - Araskov, Jovana
AU  - Miljković, Marija
AU  - Muller, Christian D.
AU  - Filipović, Nenad
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4916
AB  - Anticancer activity of Pd complexes 1-5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-for-mylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification
VL  - 199
DO  - 10.1016/j.jinorgbio.2019.110758
ER  - 
@article{
author = "Bjelogrlić, Snežana and Todorović, Tamara R. and Kojić, Milan and Sencanski, Milan and Nikolić, Milan and Visnjevac, Aleksandar and Araskov, Jovana and Miljković, Marija and Muller, Christian D. and Filipović, Nenad",
year = "2019",
abstract = "Anticancer activity of Pd complexes 1-5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-for-mylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification",
volume = "199",
doi = "10.1016/j.jinorgbio.2019.110758"
}
Bjelogrlić, S., Todorović, T. R., Kojić, M., Sencanski, M., Nikolić, M., Visnjevac, A., Araskov, J., Miljković, M., Muller, C. D.,& Filipović, N.. (2019). Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 199.
https://doi.org/10.1016/j.jinorgbio.2019.110758
Bjelogrlić S, Todorović TR, Kojić M, Sencanski M, Nikolić M, Visnjevac A, Araskov J, Miljković M, Muller CD, Filipović N. Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification. in Journal of Inorganic Biochemistry. 2019;199.
doi:10.1016/j.jinorgbio.2019.110758 .
Bjelogrlić, Snežana, Todorović, Tamara R., Kojić, Milan, Sencanski, Milan, Nikolić, Milan, Visnjevac, Aleksandar, Araskov, Jovana, Miljković, Marija, Muller, Christian D., Filipović, Nenad, "Pd(II) complexes with N-heteroaromatic hydrazone ligands: Anticancer activity, in silico and experimental target identification" in Journal of Inorganic Biochemistry, 199 (2019),
https://doi.org/10.1016/j.jinorgbio.2019.110758 . .
23
9
20

A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells

Bjelogrlić, Snežana; Todorović, Tamara R.; Cvijetić, Ilija N.; Rodić, Marko V.; Vujcić, Miroslava; Marković, Sanja; Araskov, Jovana; Janović, Barbara; Emhemmed, Fathi; Muller, Christian D.; Filipović, Nenad

(Elsevier Science Inc, New York, 2019)

TY  - JOUR
AU  - Bjelogrlić, Snežana
AU  - Todorović, Tamara R.
AU  - Cvijetić, Ilija N.
AU  - Rodić, Marko V.
AU  - Vujcić, Miroslava
AU  - Marković, Sanja
AU  - Araskov, Jovana
AU  - Janović, Barbara
AU  - Emhemmed, Fathi
AU  - Muller, Christian D.
AU  - Filipović, Nenad
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5050
AB  - A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 M induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.
PB  - Elsevier Science Inc, New York
T2  - Journal of Inorganic Biochemistry
T1  - A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells
EP  - 66
SP  - 45
VL  - 190
DO  - 10.1016/j.jinorgbio.2018.10.002
ER  - 
@article{
author = "Bjelogrlić, Snežana and Todorović, Tamara R. and Cvijetić, Ilija N. and Rodić, Marko V. and Vujcić, Miroslava and Marković, Sanja and Araskov, Jovana and Janović, Barbara and Emhemmed, Fathi and Muller, Christian D. and Filipović, Nenad",
year = "2019",
abstract = "A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 M induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.",
publisher = "Elsevier Science Inc, New York",
journal = "Journal of Inorganic Biochemistry",
title = "A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells",
pages = "66-45",
volume = "190",
doi = "10.1016/j.jinorgbio.2018.10.002"
}
Bjelogrlić, S., Todorović, T. R., Cvijetić, I. N., Rodić, M. V., Vujcić, M., Marković, S., Araskov, J., Janović, B., Emhemmed, F., Muller, C. D.,& Filipović, N.. (2019). A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 190, 45-66.
https://doi.org/10.1016/j.jinorgbio.2018.10.002
Bjelogrlić S, Todorović TR, Cvijetić IN, Rodić MV, Vujcić M, Marković S, Araskov J, Janović B, Emhemmed F, Muller CD, Filipović N. A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells. in Journal of Inorganic Biochemistry. 2019;190:45-66.
doi:10.1016/j.jinorgbio.2018.10.002 .
Bjelogrlić, Snežana, Todorović, Tamara R., Cvijetić, Ilija N., Rodić, Marko V., Vujcić, Miroslava, Marković, Sanja, Araskov, Jovana, Janović, Barbara, Emhemmed, Fathi, Muller, Christian D., Filipović, Nenad, "A novel binuclear hydrazone-based Cd(II) complex is a strong pro-apoptotic inducer with significant activity against 2D and 3D pancreatic cancer stem cells" in Journal of Inorganic Biochemistry, 190 (2019):45-66,
https://doi.org/10.1016/j.jinorgbio.2018.10.002 . .
10
5
11