Veličković, Zlate S.

Link to this page

Authority KeyName Variants
cf2c3bd7-f2ed-4a3c-a1db-594c167d3477
  • Veličković, Zlate S. (2)
Projects

Author's Bibliography

Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent

Popović, Mina; Veličković, Zlate S.; Bogdanov, Jovica; Marinković, Aleksandar D.; Casas Luna, Mariano; Trajković, Isaak; Obradović, Nina; Pavlović, Vladimir

(International Institute for the Science of Sintering (IISS), 2022)

TY  - JOUR
AU  - Popović, Mina
AU  - Veličković, Zlate S.
AU  - Bogdanov, Jovica
AU  - Marinković, Aleksandar D.
AU  - Casas Luna, Mariano
AU  - Trajković, Isaak
AU  - Obradović, Nina
AU  - Pavlović, Vladimir
PY  - 2022
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6057
AB  - In this study, the structure, morphology and composition of the synthesized magnetite/3D-printed wollastonite (3D_W/M) composite were characterized, and its adsorption performance with respect to As(V) and Cr(VI) were studied. Magnetite (MG) modified 3D printed wollastonite was obtained by two step procedure: modification of 3D_W with 3-aminoproylsilane (APTES) followed by controlled magnetite (MG) deposition to obtain 3D_W/M adsorbent. The structure/properties of 3D_W/M were confirmed by applying FTIR, XRD, TGD/DTA, and SEM analysis. The adsorption properties of hybrid adsorbents were carried out for As(V) and Cr(VI) removal-one relative to the initial pH value, the adsorbent mass, the temperature, and the adsorption time. Time-dependent adsorption study was best described by pseudo-second order equation, while Weber Morris analysis showed that intraparticle diffusion controled diffusional transport. Similar activation energy, 17.44 and 14.49 kJ•mol-1 for adsorption As(V) and Cr(VI) on 3D_W/M, respectively, indicated main contribution of physical adsorption. Determination of adsorption parameters was performed by applying different adsorption isotherm models, and the best fit was obtained using Freundlich model. The adsorption capacity of 24.16 and 29.6 mg g-1 for As(V) and Cr(VI) at 2o C, Co = 5.5 and 5.3 mg L-1, respectively, were obtained. Thermodynamic study indicated favourable process at a higher temperature. Preliminary fixed-bed column study and results fitting with Bohart-Adams, Yoon-Nelson, Thomas, and Modified dose-response model showed good agreement with results from the batch study.
PB  - International Institute for the Science of Sintering (IISS)
T2  - Science of Sintering
T1  - Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent
EP  - 124
IS  - 1
SP  - 105
VL  - 54
DO  - 10.2298/SOS2201105P
ER  - 
@article{
author = "Popović, Mina and Veličković, Zlate S. and Bogdanov, Jovica and Marinković, Aleksandar D. and Casas Luna, Mariano and Trajković, Isaak and Obradović, Nina and Pavlović, Vladimir",
year = "2022",
abstract = "In this study, the structure, morphology and composition of the synthesized magnetite/3D-printed wollastonite (3D_W/M) composite were characterized, and its adsorption performance with respect to As(V) and Cr(VI) were studied. Magnetite (MG) modified 3D printed wollastonite was obtained by two step procedure: modification of 3D_W with 3-aminoproylsilane (APTES) followed by controlled magnetite (MG) deposition to obtain 3D_W/M adsorbent. The structure/properties of 3D_W/M were confirmed by applying FTIR, XRD, TGD/DTA, and SEM analysis. The adsorption properties of hybrid adsorbents were carried out for As(V) and Cr(VI) removal-one relative to the initial pH value, the adsorbent mass, the temperature, and the adsorption time. Time-dependent adsorption study was best described by pseudo-second order equation, while Weber Morris analysis showed that intraparticle diffusion controled diffusional transport. Similar activation energy, 17.44 and 14.49 kJ•mol-1 for adsorption As(V) and Cr(VI) on 3D_W/M, respectively, indicated main contribution of physical adsorption. Determination of adsorption parameters was performed by applying different adsorption isotherm models, and the best fit was obtained using Freundlich model. The adsorption capacity of 24.16 and 29.6 mg g-1 for As(V) and Cr(VI) at 2o C, Co = 5.5 and 5.3 mg L-1, respectively, were obtained. Thermodynamic study indicated favourable process at a higher temperature. Preliminary fixed-bed column study and results fitting with Bohart-Adams, Yoon-Nelson, Thomas, and Modified dose-response model showed good agreement with results from the batch study.",
publisher = "International Institute for the Science of Sintering (IISS)",
journal = "Science of Sintering",
title = "Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent",
pages = "124-105",
number = "1",
volume = "54",
doi = "10.2298/SOS2201105P"
}
Popović, M., Veličković, Z. S., Bogdanov, J., Marinković, A. D., Casas Luna, M., Trajković, I., Obradović, N.,& Pavlović, V.. (2022). Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent. in Science of Sintering
International Institute for the Science of Sintering (IISS)., 54(1), 105-124.
https://doi.org/10.2298/SOS2201105P
Popović M, Veličković ZS, Bogdanov J, Marinković AD, Casas Luna M, Trajković I, Obradović N, Pavlović V. Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent. in Science of Sintering. 2022;54(1):105-124.
doi:10.2298/SOS2201105P .
Popović, Mina, Veličković, Zlate S., Bogdanov, Jovica, Marinković, Aleksandar D., Casas Luna, Mariano, Trajković, Isaak, Obradović, Nina, Pavlović, Vladimir, "Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent" in Science of Sintering, 54, no. 1 (2022):105-124,
https://doi.org/10.2298/SOS2201105P . .
3
2

Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent

Perendija, Jovana; Veličković, Zlate S.; Dražević, Ljubinka; Stojiljković, Ivana; Milčić, Miloš; Milosavljević, Milutin M.; Marinković, Aleksandar D.; Pavlović, Vladimir

(International Institute for the Science of Sintering (IISS), 2021)

TY  - JOUR
AU  - Perendija, Jovana
AU  - Veličković, Zlate S.
AU  - Dražević, Ljubinka
AU  - Stojiljković, Ivana
AU  - Milčić, Miloš
AU  - Milosavljević, Milutin M.
AU  - Marinković, Aleksandar D.
AU  - Pavlović, Vladimir
PY  - 2021
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5957
AB  - Magnetite (MG) modified cellulose membrane (Cell-MG), obtained by reaction of 3-aminosilane and subsequently with diethylenetriaminepentaacetic acid dianhydride functionalized waste Cell fibers (Cell-NH2 and Cell-DTPA, respectively), and amino-modified diatomite was used for Azoxystrobin and Iprodione removal from water. Cell-MG membrane was structurally and morphologically characterized using FT-IR and FE-SEM techniques. The influences of operational parameters, i.e. pH, contact time, temperature, and the mass of adsorbent on adsorption and kinetics were studied in a batch system. The calculated capacities of 35.32 and 30.16 mg g-1 for Azoxystrobin and Iprodione, respectively, were obtained from non-linear Langmuir model fitting. Weber-Morris model fitting indicates the main contribution of intra-particle diffusion to overall mass transport resistance. Thermodynamic data indicate spontaneous and endothermic adsorption. The reusability of adsorbent and results from wastewater purification showed that Cell-MG could be used as general-purpose adsorbent. The adsorbent/adsorbate surface interaction was considered from the results obtained using density functional theory (DFT) and calculation of molecular electrostatic potential (MEP). Thus, a better understanding of the relation between the adsorption performances and contribution of non-specific and specific interactions to adsorption performances and design of novel adsorbent with improved properties was deduced.
PB  - International Institute for the Science of Sintering (IISS)
T2  - Science of Sintering
T1  - Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent
EP  - 378
IS  - 3
SP  - 355
VL  - 53
DO  - 10.2298/SOS2103355P
ER  - 
@article{
author = "Perendija, Jovana and Veličković, Zlate S. and Dražević, Ljubinka and Stojiljković, Ivana and Milčić, Miloš and Milosavljević, Milutin M. and Marinković, Aleksandar D. and Pavlović, Vladimir",
year = "2021",
abstract = "Magnetite (MG) modified cellulose membrane (Cell-MG), obtained by reaction of 3-aminosilane and subsequently with diethylenetriaminepentaacetic acid dianhydride functionalized waste Cell fibers (Cell-NH2 and Cell-DTPA, respectively), and amino-modified diatomite was used for Azoxystrobin and Iprodione removal from water. Cell-MG membrane was structurally and morphologically characterized using FT-IR and FE-SEM techniques. The influences of operational parameters, i.e. pH, contact time, temperature, and the mass of adsorbent on adsorption and kinetics were studied in a batch system. The calculated capacities of 35.32 and 30.16 mg g-1 for Azoxystrobin and Iprodione, respectively, were obtained from non-linear Langmuir model fitting. Weber-Morris model fitting indicates the main contribution of intra-particle diffusion to overall mass transport resistance. Thermodynamic data indicate spontaneous and endothermic adsorption. The reusability of adsorbent and results from wastewater purification showed that Cell-MG could be used as general-purpose adsorbent. The adsorbent/adsorbate surface interaction was considered from the results obtained using density functional theory (DFT) and calculation of molecular electrostatic potential (MEP). Thus, a better understanding of the relation between the adsorption performances and contribution of non-specific and specific interactions to adsorption performances and design of novel adsorbent with improved properties was deduced.",
publisher = "International Institute for the Science of Sintering (IISS)",
journal = "Science of Sintering",
title = "Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent",
pages = "378-355",
number = "3",
volume = "53",
doi = "10.2298/SOS2103355P"
}
Perendija, J., Veličković, Z. S., Dražević, L., Stojiljković, I., Milčić, M., Milosavljević, M. M., Marinković, A. D.,& Pavlović, V.. (2021). Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent. in Science of Sintering
International Institute for the Science of Sintering (IISS)., 53(3), 355-378.
https://doi.org/10.2298/SOS2103355P
Perendija J, Veličković ZS, Dražević L, Stojiljković I, Milčić M, Milosavljević MM, Marinković AD, Pavlović V. Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent. in Science of Sintering. 2021;53(3):355-378.
doi:10.2298/SOS2103355P .
Perendija, Jovana, Veličković, Zlate S., Dražević, Ljubinka, Stojiljković, Ivana, Milčić, Miloš, Milosavljević, Milutin M., Marinković, Aleksandar D., Pavlović, Vladimir, "Evaluation of adsorption performance and quantum chemical modeling of pesticides removal using cell-mg hybrid adsorbent" in Science of Sintering, 53, no. 3 (2021):355-378,
https://doi.org/10.2298/SOS2103355P . .
4
3