Stojanović, Jovica

Link to this page

Authority KeyName Variants
8e1d2fdf-d5ee-4536-b1d4-76179a7d5991
  • Stojanović, Jovica (5)
Projects

Author's Bibliography

Application of pyrophyllite in high-temperature treated building materials

Terzić, Anja; Vasić, Milica V.; Stojanović, Jovica; Pavlović, Vladimir B.; Radojević, Zagorka

(2023)

TY  - JOUR
AU  - Terzić, Anja
AU  - Vasić, Milica V.
AU  - Stojanović, Jovica
AU  - Pavlović, Vladimir B.
AU  - Radojević, Zagorka
PY  - 2023
UR  - https://doiserbia.nb.rs/Article.aspx?ID=0350-820X2300014T
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6467
AB  - Phyllosilicate mineral pyrophyllite is predominantly used in the ceramic industry because it exhibits high refractoriness. Due to its thermal transformation into mullite, pyrophyllite is stable at elevated temperatures, making it a suitable mineral additive for refractory non-shaped materials and various ceramic shaped products. In this study, pyrophyllite is employed as 50 % clay replacement in the ceramics and up to 30 % cement replacement in mortars. Physico-mechanical properties were investigated. The firing shrinkage in the ceramics treated at 1200 °C was reduced by pyrophyllite addition. Pyrophyllite acted as additional pozzolana during cement hydration. Within the microstructure, it formed micro-reinforcement in the shape of crystalline folia, which improves the mechanical properties of ordinary Portland cement, high aluminate cement, and blended cement mortars. The investigation proved the efficiency and suitability of pyrophyllite employed as a substitution for clay in ceramics and a cement replacement in mortars.
AB  - Phyllosilicate mineral pyrophyllite is predominantly used in the ceramic industry because it exhibits high refractoriness. Due to its thermal transformation into mullite, pyrophyllite is stable at elevated temperatures, making it a suitable mineral additive for refractory non-shaped materials and various ceramic shaped products. In this study, pyrophyllite is employed as 50 % clay replacement in the ceramics and up to 30 % cement replacement in mortars. Physico-mechanical properties were investigated. The firing shrinkage in the ceramics treated at 1200 °C was reduced by pyrophyllite addition. Pyrophyllite acted as additional pozzolana during cement hydration. Within the microstructure, it formed micro-reinforcement in the shape of crystalline folia, which improves the mechanical properties of ordinary Portland cement, high aluminate cement, and blended cement mortars. The investigation proved the efficiency and suitability of pyrophyllite employed as a substitution for clay in ceramics and a cement replacement in mortars.
T2  - Science of Sintering
T2  - Science of Sintering
T1  - Application of pyrophyllite in high-temperature treated building materials
EP  - 397
IS  - 3
SP  - 383
VL  - 55
UR  - https://hdl.handle.net/21.15107/rcub_agrospace_6467
ER  - 
@article{
author = "Terzić, Anja and Vasić, Milica V. and Stojanović, Jovica and Pavlović, Vladimir B. and Radojević, Zagorka",
year = "2023",
abstract = "Phyllosilicate mineral pyrophyllite is predominantly used in the ceramic industry because it exhibits high refractoriness. Due to its thermal transformation into mullite, pyrophyllite is stable at elevated temperatures, making it a suitable mineral additive for refractory non-shaped materials and various ceramic shaped products. In this study, pyrophyllite is employed as 50 % clay replacement in the ceramics and up to 30 % cement replacement in mortars. Physico-mechanical properties were investigated. The firing shrinkage in the ceramics treated at 1200 °C was reduced by pyrophyllite addition. Pyrophyllite acted as additional pozzolana during cement hydration. Within the microstructure, it formed micro-reinforcement in the shape of crystalline folia, which improves the mechanical properties of ordinary Portland cement, high aluminate cement, and blended cement mortars. The investigation proved the efficiency and suitability of pyrophyllite employed as a substitution for clay in ceramics and a cement replacement in mortars., Phyllosilicate mineral pyrophyllite is predominantly used in the ceramic industry because it exhibits high refractoriness. Due to its thermal transformation into mullite, pyrophyllite is stable at elevated temperatures, making it a suitable mineral additive for refractory non-shaped materials and various ceramic shaped products. In this study, pyrophyllite is employed as 50 % clay replacement in the ceramics and up to 30 % cement replacement in mortars. Physico-mechanical properties were investigated. The firing shrinkage in the ceramics treated at 1200 °C was reduced by pyrophyllite addition. Pyrophyllite acted as additional pozzolana during cement hydration. Within the microstructure, it formed micro-reinforcement in the shape of crystalline folia, which improves the mechanical properties of ordinary Portland cement, high aluminate cement, and blended cement mortars. The investigation proved the efficiency and suitability of pyrophyllite employed as a substitution for clay in ceramics and a cement replacement in mortars.",
journal = "Science of Sintering, Science of Sintering",
title = "Application of pyrophyllite in high-temperature treated building materials",
pages = "397-383",
number = "3",
volume = "55",
url = "https://hdl.handle.net/21.15107/rcub_agrospace_6467"
}
Terzić, A., Vasić, M. V., Stojanović, J., Pavlović, V. B.,& Radojević, Z.. (2023). Application of pyrophyllite in high-temperature treated building materials. in Science of Sintering, 55(3), 383-397.
https://hdl.handle.net/21.15107/rcub_agrospace_6467
Terzić A, Vasić MV, Stojanović J, Pavlović VB, Radojević Z. Application of pyrophyllite in high-temperature treated building materials. in Science of Sintering. 2023;55(3):383-397.
https://hdl.handle.net/21.15107/rcub_agrospace_6467 .
Terzić, Anja, Vasić, Milica V., Stojanović, Jovica, Pavlović, Vladimir B., Radojević, Zagorka, "Application of pyrophyllite in high-temperature treated building materials" in Science of Sintering, 55, no. 3 (2023):383-397,
https://hdl.handle.net/21.15107/rcub_agrospace_6467 .

Effects of mechanical-activation and TiO2 addition on the behavior of two-step sintered steatite ceramics

Terzić, Anja; Obradović, Nina; Kosanović, Darko; Stojanović, Jovica; Djordjević, Antonije; Andrić, Ljubiša; Pavlović, Vladimir

(Elsevier Sci Ltd, Oxford, 2019)

TY  - JOUR
AU  - Terzić, Anja
AU  - Obradović, Nina
AU  - Kosanović, Darko
AU  - Stojanović, Jovica
AU  - Djordjević, Antonije
AU  - Andrić, Ljubiša
AU  - Pavlović, Vladimir
PY  - 2019
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5028
AB  - Steatite, as ceramic with composition predominantly resting on magnesium silicate, was produced from economic resources - talc, aluminosilicate clays, and either BaCO3 or feldspar as flux. Titanium dioxide was a doping agent. Four steatite mixtures were mechanically activated in a planetary ball mill for 30, 45 or 60 min, prior to the thermal treatment. Two-step sintering with initial phase set at 1350 degrees C and holding period conducted at 1250 degrees C was applied to initiate diffusion and prevent grain growth. Thereby, a high density ceramic material with low-porous submicron structure was acquired. The effects of TiO2 addition on densification, microstructure, and dielectric characteristics of steatites were monitored. The thermal stability of green mixtures was tested by differential thermal and thermogravimetric analyses. Changes in crystallinity and mineral phase composition were observed by the X-ray diffraction technique. Microstructural visualization with spatial arrangements of individual chemical elements on surface of the sintered ceramics was acquired by scanning electron microscopy accompanied with EDS mapping. In order to test the possibility of employment of the obtained steatites in insulation materials, electrical measurements were conducted by recording variations of the dielectric constant and loss tangent as a function of alternations in the mix-design and the mechanical activation period.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Effects of mechanical-activation and TiO2 addition on the behavior of two-step sintered steatite ceramics
EP  - 3022
IS  - 3
SP  - 3013
VL  - 45
DO  - 10.1016/j.ceramint.2018.10.120
ER  - 
@article{
author = "Terzić, Anja and Obradović, Nina and Kosanović, Darko and Stojanović, Jovica and Djordjević, Antonije and Andrić, Ljubiša and Pavlović, Vladimir",
year = "2019",
abstract = "Steatite, as ceramic with composition predominantly resting on magnesium silicate, was produced from economic resources - talc, aluminosilicate clays, and either BaCO3 or feldspar as flux. Titanium dioxide was a doping agent. Four steatite mixtures were mechanically activated in a planetary ball mill for 30, 45 or 60 min, prior to the thermal treatment. Two-step sintering with initial phase set at 1350 degrees C and holding period conducted at 1250 degrees C was applied to initiate diffusion and prevent grain growth. Thereby, a high density ceramic material with low-porous submicron structure was acquired. The effects of TiO2 addition on densification, microstructure, and dielectric characteristics of steatites were monitored. The thermal stability of green mixtures was tested by differential thermal and thermogravimetric analyses. Changes in crystallinity and mineral phase composition were observed by the X-ray diffraction technique. Microstructural visualization with spatial arrangements of individual chemical elements on surface of the sintered ceramics was acquired by scanning electron microscopy accompanied with EDS mapping. In order to test the possibility of employment of the obtained steatites in insulation materials, electrical measurements were conducted by recording variations of the dielectric constant and loss tangent as a function of alternations in the mix-design and the mechanical activation period.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Effects of mechanical-activation and TiO2 addition on the behavior of two-step sintered steatite ceramics",
pages = "3022-3013",
number = "3",
volume = "45",
doi = "10.1016/j.ceramint.2018.10.120"
}
Terzić, A., Obradović, N., Kosanović, D., Stojanović, J., Djordjević, A., Andrić, L.,& Pavlović, V.. (2019). Effects of mechanical-activation and TiO2 addition on the behavior of two-step sintered steatite ceramics. in Ceramics International
Elsevier Sci Ltd, Oxford., 45(3), 3013-3022.
https://doi.org/10.1016/j.ceramint.2018.10.120
Terzić A, Obradović N, Kosanović D, Stojanović J, Djordjević A, Andrić L, Pavlović V. Effects of mechanical-activation and TiO2 addition on the behavior of two-step sintered steatite ceramics. in Ceramics International. 2019;45(3):3013-3022.
doi:10.1016/j.ceramint.2018.10.120 .
Terzić, Anja, Obradović, Nina, Kosanović, Darko, Stojanović, Jovica, Djordjević, Antonije, Andrić, Ljubiša, Pavlović, Vladimir, "Effects of mechanical-activation and TiO2 addition on the behavior of two-step sintered steatite ceramics" in Ceramics International, 45, no. 3 (2019):3013-3022,
https://doi.org/10.1016/j.ceramint.2018.10.120 . .
1
2
2

Microstructure and Phase Composition Of Steatite Ceramics Sintered by Traditional and Spark Plasma Sintering

Terzić, Anja; Obradović, Nina; Pouchly, Vaclav; Stojanović, Jovica; Maca, Karel; Pavlović, Vladimir

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2018)

TY  - JOUR
AU  - Terzić, Anja
AU  - Obradović, Nina
AU  - Pouchly, Vaclav
AU  - Stojanović, Jovica
AU  - Maca, Karel
AU  - Pavlović, Vladimir
PY  - 2018
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4704
AB  - The influence of the sintering method on the mineral phase transformations and development of the crystalline microstructure of steatite ceramics was investigated. The steatite samples were fabricated from talc and bentonite as low-cost raw materials. Feldspar and barium carbonate, as fluxing agents, were altered in the steatite composition. Dilatometric analysis was applied in the monitoring of the dimensional changes and thereby densification of steatite during the traditional sintering (TS) procedure up to 1200 degrees C. Spark plasma sintering (SPS) method was used under the following sintering conditions: 100 degrees C/min heating rate, uniaxial pressure of 50 MPa; sintering temperature 800 degrees C/1 min or 1000 degrees C/2 min. Crystallinity changes and mineral phase transition during sintering were observed by X-ray diffraction technique. Microstructural visualization of the samples and the spatial arrangements of individual chemical elements were achieved via scanning electron microscopy equipped with the EDS mapping. It was found that SPS sintering facilitated all microstructural changes during high temperature treatment and shifted them to lower temperatures. SPS treatment conducted at 1000 degrees C resulted in maximum densification of the steatite powder compacts and the formation stabilized protoenstatite structure.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Microstructure and Phase Composition Of Steatite Ceramics Sintered by Traditional and Spark Plasma Sintering
EP  - 312
IS  - 3
SP  - 299
VL  - 50
DO  - 10.2298/SOS1803299T
ER  - 
@article{
author = "Terzić, Anja and Obradović, Nina and Pouchly, Vaclav and Stojanović, Jovica and Maca, Karel and Pavlović, Vladimir",
year = "2018",
abstract = "The influence of the sintering method on the mineral phase transformations and development of the crystalline microstructure of steatite ceramics was investigated. The steatite samples were fabricated from talc and bentonite as low-cost raw materials. Feldspar and barium carbonate, as fluxing agents, were altered in the steatite composition. Dilatometric analysis was applied in the monitoring of the dimensional changes and thereby densification of steatite during the traditional sintering (TS) procedure up to 1200 degrees C. Spark plasma sintering (SPS) method was used under the following sintering conditions: 100 degrees C/min heating rate, uniaxial pressure of 50 MPa; sintering temperature 800 degrees C/1 min or 1000 degrees C/2 min. Crystallinity changes and mineral phase transition during sintering were observed by X-ray diffraction technique. Microstructural visualization of the samples and the spatial arrangements of individual chemical elements were achieved via scanning electron microscopy equipped with the EDS mapping. It was found that SPS sintering facilitated all microstructural changes during high temperature treatment and shifted them to lower temperatures. SPS treatment conducted at 1000 degrees C resulted in maximum densification of the steatite powder compacts and the formation stabilized protoenstatite structure.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Microstructure and Phase Composition Of Steatite Ceramics Sintered by Traditional and Spark Plasma Sintering",
pages = "312-299",
number = "3",
volume = "50",
doi = "10.2298/SOS1803299T"
}
Terzić, A., Obradović, N., Pouchly, V., Stojanović, J., Maca, K.,& Pavlović, V.. (2018). Microstructure and Phase Composition Of Steatite Ceramics Sintered by Traditional and Spark Plasma Sintering. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 50(3), 299-312.
https://doi.org/10.2298/SOS1803299T
Terzić A, Obradović N, Pouchly V, Stojanović J, Maca K, Pavlović V. Microstructure and Phase Composition Of Steatite Ceramics Sintered by Traditional and Spark Plasma Sintering. in Science of Sintering. 2018;50(3):299-312.
doi:10.2298/SOS1803299T .
Terzić, Anja, Obradović, Nina, Pouchly, Vaclav, Stojanović, Jovica, Maca, Karel, Pavlović, Vladimir, "Microstructure and Phase Composition Of Steatite Ceramics Sintered by Traditional and Spark Plasma Sintering" in Science of Sintering, 50, no. 3 (2018):299-312,
https://doi.org/10.2298/SOS1803299T . .
6
3
5

Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials

Terzić, Anja; Obradović, Nina; Stojanović, Jovica; Pavlović, Vladimir; Andrić, Ljubiša; Olcan, Dragan; Djordjević, Antonije

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Terzić, Anja
AU  - Obradović, Nina
AU  - Stojanović, Jovica
AU  - Pavlović, Vladimir
AU  - Andrić, Ljubiša
AU  - Olcan, Dragan
AU  - Djordjević, Antonije
PY  - 2017
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4491
AB  - The focus of the study was on providing insights into interconnections between sintering and development of the crystalline microstructure, and consequently variations in dielectric behavior of four steatites fabricated from a low-cost raw material, i.e. talc. The changes, induced by the alternations of the binders (bentonite, kaolin clay) and fluxing agents (BaCO3, feldspar), were monitored in the temperature range 1000 degrees to 1250 degrees C in which complete densification and re-crystallization of the investigated structures were accomplished. The critical points in the synthesis of steatite materials were assessed by instrumental analyses. Crystallinity changes and mineral phase transition during sintering were monitored by X-ray diffraction technique. Microstructural visualization of the samples and the spatial arrangements of individual chemical elements were achieved via scanning electron microscopy accompanied with EDS mapping. The thermal stability was observed on the green mixtures using differential thermal and thermo gravimetric analyses. Electrical measurements recorded variations of the dielectric constant (epsilon(r)) and loss tangent (tan delta) as a function of the sintering temperature. The investigation highlighted critical design points, as well as the optimal combinations of the raw materials for production of the steatite ceramics for advanced electrical engineering applications.
PB  - Elsevier Sci Ltd, Oxford
T2  - Ceramics International
T1  - Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials
EP  - 13275
IS  - 16
SP  - 13264
VL  - 43
DO  - 10.1016/j.ceramint.2017.07.024
ER  - 
@article{
author = "Terzić, Anja and Obradović, Nina and Stojanović, Jovica and Pavlović, Vladimir and Andrić, Ljubiša and Olcan, Dragan and Djordjević, Antonije",
year = "2017",
abstract = "The focus of the study was on providing insights into interconnections between sintering and development of the crystalline microstructure, and consequently variations in dielectric behavior of four steatites fabricated from a low-cost raw material, i.e. talc. The changes, induced by the alternations of the binders (bentonite, kaolin clay) and fluxing agents (BaCO3, feldspar), were monitored in the temperature range 1000 degrees to 1250 degrees C in which complete densification and re-crystallization of the investigated structures were accomplished. The critical points in the synthesis of steatite materials were assessed by instrumental analyses. Crystallinity changes and mineral phase transition during sintering were monitored by X-ray diffraction technique. Microstructural visualization of the samples and the spatial arrangements of individual chemical elements were achieved via scanning electron microscopy accompanied with EDS mapping. The thermal stability was observed on the green mixtures using differential thermal and thermo gravimetric analyses. Electrical measurements recorded variations of the dielectric constant (epsilon(r)) and loss tangent (tan delta) as a function of the sintering temperature. The investigation highlighted critical design points, as well as the optimal combinations of the raw materials for production of the steatite ceramics for advanced electrical engineering applications.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Ceramics International",
title = "Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials",
pages = "13275-13264",
number = "16",
volume = "43",
doi = "10.1016/j.ceramint.2017.07.024"
}
Terzić, A., Obradović, N., Stojanović, J., Pavlović, V., Andrić, L., Olcan, D.,& Djordjević, A.. (2017). Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials. in Ceramics International
Elsevier Sci Ltd, Oxford., 43(16), 13264-13275.
https://doi.org/10.1016/j.ceramint.2017.07.024
Terzić A, Obradović N, Stojanović J, Pavlović V, Andrić L, Olcan D, Djordjević A. Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials. in Ceramics International. 2017;43(16):13264-13275.
doi:10.1016/j.ceramint.2017.07.024 .
Terzić, Anja, Obradović, Nina, Stojanović, Jovica, Pavlović, Vladimir, Andrić, Ljubiša, Olcan, Dragan, Djordjević, Antonije, "Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials" in Ceramics International, 43, no. 16 (2017):13264-13275,
https://doi.org/10.1016/j.ceramint.2017.07.024 . .
10
4
10

Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash

Terzić, Anja; Obradović, Nina; Andrić, Ljubiša; Stojanović, Jovica; Pavlović, Vladimir

(Springer, Dordrecht, 2015)

TY  - JOUR
AU  - Terzić, Anja
AU  - Obradović, Nina
AU  - Andrić, Ljubiša
AU  - Stojanović, Jovica
AU  - Pavlović, Vladimir
PY  - 2015
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/3772
AB  - The effects that the fly ash addition has on the behavior of thermally resistant corundum concrete were discussed. Experimental program implied production of two refractory composites: "referent" concrete from 20 % of high-aluminate cement and 80 % of corundum aggregate, "recycled" concrete from 10 % of high-aluminate cement, 20 % of lignite coal ash, and 70 % of corundum aggregate. The fly ash was mechanically activated by a vibratory disk mill. In the concrete matrix, the ash had a role of cement partial replacement and microfiller. The mechanical and thermal properties of the concretes were studied at temperatures ranging from ambient to 1,400 A degrees C as adopted maximum. Mechanisms of thermally induced processes were observed by differential thermal analysis at 10, 20, and 30 A degrees C min(-1) heating rates. Referent and recycled concretes showed differences in calculated activation energies. The variations in refractory concretes performances were discussed with support of scanning electron microscope imagining and X-ray diffraction results. The recycled ash concrete exhibited properties that met the requirements for the castables, which proves it suitable for use in severe conditions at high temperature and highlights the reusing principle and possibility of cleaner and economically sustainable production.
PB  - Springer, Dordrecht
T2  - Journal of Thermal Analysis and Calorimetry
T1  - Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash
EP  - 1352
IS  - 2
SP  - 1339
VL  - 119
DO  - 10.1007/s10973-014-4230-4
ER  - 
@article{
author = "Terzić, Anja and Obradović, Nina and Andrić, Ljubiša and Stojanović, Jovica and Pavlović, Vladimir",
year = "2015",
abstract = "The effects that the fly ash addition has on the behavior of thermally resistant corundum concrete were discussed. Experimental program implied production of two refractory composites: "referent" concrete from 20 % of high-aluminate cement and 80 % of corundum aggregate, "recycled" concrete from 10 % of high-aluminate cement, 20 % of lignite coal ash, and 70 % of corundum aggregate. The fly ash was mechanically activated by a vibratory disk mill. In the concrete matrix, the ash had a role of cement partial replacement and microfiller. The mechanical and thermal properties of the concretes were studied at temperatures ranging from ambient to 1,400 A degrees C as adopted maximum. Mechanisms of thermally induced processes were observed by differential thermal analysis at 10, 20, and 30 A degrees C min(-1) heating rates. Referent and recycled concretes showed differences in calculated activation energies. The variations in refractory concretes performances were discussed with support of scanning electron microscope imagining and X-ray diffraction results. The recycled ash concrete exhibited properties that met the requirements for the castables, which proves it suitable for use in severe conditions at high temperature and highlights the reusing principle and possibility of cleaner and economically sustainable production.",
publisher = "Springer, Dordrecht",
journal = "Journal of Thermal Analysis and Calorimetry",
title = "Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash",
pages = "1352-1339",
number = "2",
volume = "119",
doi = "10.1007/s10973-014-4230-4"
}
Terzić, A., Obradović, N., Andrić, L., Stojanović, J.,& Pavlović, V.. (2015). Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash. in Journal of Thermal Analysis and Calorimetry
Springer, Dordrecht., 119(2), 1339-1352.
https://doi.org/10.1007/s10973-014-4230-4
Terzić A, Obradović N, Andrić L, Stojanović J, Pavlović V. Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash. in Journal of Thermal Analysis and Calorimetry. 2015;119(2):1339-1352.
doi:10.1007/s10973-014-4230-4 .
Terzić, Anja, Obradović, Nina, Andrić, Ljubiša, Stojanović, Jovica, Pavlović, Vladimir, "Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash" in Journal of Thermal Analysis and Calorimetry, 119, no. 2 (2015):1339-1352,
https://doi.org/10.1007/s10973-014-4230-4 . .
7
5
8