Stojanović, Dušica

Link to this page

Authority KeyName Variants
3c0c921b-e3f1-4483-bfa1-7f756048dcaf
  • Stojanović, Dušica (1)
  • Stojanović, Dušica B. (1)
Projects

Author's Bibliography

Biodegradable and active zein-gelatin-based electrospun mats and solvent-cast films incorporating sage extract: Formulation and comparative characterization

Salević-Jelić, Ana; Lević, Steva; Stojanović, Dušica; Jeremić, Sanja; Miletić, Dunja; Pantić, Milena; Pavlović, Vladimir; Ignjatović, Ivana Sredović; Uskoković, Petar; Nedović, Viktor

(2023)

TY  - JOUR
AU  - Salević-Jelić, Ana
AU  - Lević, Steva
AU  - Stojanović, Dušica
AU  - Jeremić, Sanja
AU  - Miletić, Dunja
AU  - Pantić, Milena
AU  - Pavlović, Vladimir
AU  - Ignjatović, Ivana Sredović
AU  - Uskoković, Petar
AU  - Nedović, Viktor
PY  - 2023
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6260
AB  - This study aimed to develop active, biodegradable materials for food packaging by incorporating sage extract (SE) within a zein-gelatin blend by electrospinning and solvent casting. The fabrication techniques, SE incorporation, and its content (5, 10% w/w) determined the materials’ properties. Electrospinning produced 0.36–0.53 mm thick, non-transparent fibrous mats (mean fiber diameter 1.12–1.36 µm). Solvent casting generated 0.34–0.41 mm thick, transparent continuous films. The analysis indicated the constituents’ compatibility, homogenous dispersion, and efficient SE incorporation without strong chemical interactions and phase separation. The solvent-cast films presented more ordered structures, higher mechanical resistance, elongation, and water vapor barrier performance than the electrospun mats. The SE-incorporating formulations showed phenolics’ delivery ability to food simulants influenced by structure, SE content, and media polarity. The electrospun mats expressed higher DPPH• radicals’ inhibition, while the solvent-cast films showed stronger Staphylococcus aureus and Escherichia coli growth inhibition, increased by SE incorporation. All formulations showed rapid complete bio-disintegration in compost (18–25 days). © 2023 Elsevier Ltd
T2  - Food Packaging and Shelf Life
T2  - Food Packaging and Shelf Life
T1  - Biodegradable and active zein-gelatin-based electrospun mats and solvent-cast films incorporating sage extract: Formulation and comparative characterization
VL  - 35
DO  - 10.1016/j.fpsl.2023.101027
ER  - 
@article{
author = "Salević-Jelić, Ana and Lević, Steva and Stojanović, Dušica and Jeremić, Sanja and Miletić, Dunja and Pantić, Milena and Pavlović, Vladimir and Ignjatović, Ivana Sredović and Uskoković, Petar and Nedović, Viktor",
year = "2023",
abstract = "This study aimed to develop active, biodegradable materials for food packaging by incorporating sage extract (SE) within a zein-gelatin blend by electrospinning and solvent casting. The fabrication techniques, SE incorporation, and its content (5, 10% w/w) determined the materials’ properties. Electrospinning produced 0.36–0.53 mm thick, non-transparent fibrous mats (mean fiber diameter 1.12–1.36 µm). Solvent casting generated 0.34–0.41 mm thick, transparent continuous films. The analysis indicated the constituents’ compatibility, homogenous dispersion, and efficient SE incorporation without strong chemical interactions and phase separation. The solvent-cast films presented more ordered structures, higher mechanical resistance, elongation, and water vapor barrier performance than the electrospun mats. The SE-incorporating formulations showed phenolics’ delivery ability to food simulants influenced by structure, SE content, and media polarity. The electrospun mats expressed higher DPPH• radicals’ inhibition, while the solvent-cast films showed stronger Staphylococcus aureus and Escherichia coli growth inhibition, increased by SE incorporation. All formulations showed rapid complete bio-disintegration in compost (18–25 days). © 2023 Elsevier Ltd",
journal = "Food Packaging and Shelf Life, Food Packaging and Shelf Life",
title = "Biodegradable and active zein-gelatin-based electrospun mats and solvent-cast films incorporating sage extract: Formulation and comparative characterization",
volume = "35",
doi = "10.1016/j.fpsl.2023.101027"
}
Salević-Jelić, A., Lević, S., Stojanović, D., Jeremić, S., Miletić, D., Pantić, M., Pavlović, V., Ignjatović, I. S., Uskoković, P.,& Nedović, V.. (2023). Biodegradable and active zein-gelatin-based electrospun mats and solvent-cast films incorporating sage extract: Formulation and comparative characterization. in Food Packaging and Shelf Life, 35.
https://doi.org/10.1016/j.fpsl.2023.101027
Salević-Jelić A, Lević S, Stojanović D, Jeremić S, Miletić D, Pantić M, Pavlović V, Ignjatović IS, Uskoković P, Nedović V. Biodegradable and active zein-gelatin-based electrospun mats and solvent-cast films incorporating sage extract: Formulation and comparative characterization. in Food Packaging and Shelf Life. 2023;35.
doi:10.1016/j.fpsl.2023.101027 .
Salević-Jelić, Ana, Lević, Steva, Stojanović, Dušica, Jeremić, Sanja, Miletić, Dunja, Pantić, Milena, Pavlović, Vladimir, Ignjatović, Ivana Sredović, Uskoković, Petar, Nedović, Viktor, "Biodegradable and active zein-gelatin-based electrospun mats and solvent-cast films incorporating sage extract: Formulation and comparative characterization" in Food Packaging and Shelf Life, 35 (2023),
https://doi.org/10.1016/j.fpsl.2023.101027 . .
6

Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers

Grković, Mirjana; Stojanović, Dušica B.; Pavlović, Vladimir; Rajilić-Stojanović, Mirjana; Bjelović, Milos; Uskoković, Petar S.

(Elsevier Sci Ltd, Oxford, 2017)

TY  - JOUR
AU  - Grković, Mirjana
AU  - Stojanović, Dušica B.
AU  - Pavlović, Vladimir
AU  - Rajilić-Stojanović, Mirjana
AU  - Bjelović, Milos
AU  - Uskoković, Petar S.
PY  - 2017
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4459
AB  - In this study conditions for green crosslinking with citric acid of chitosan/PEO (polyethylene oxide) nanofibers were evaluated. The thermal in situ crosslinking enabled penetration of crosslinking agent into the matrix providing an improvement of antibacterial activity, thermal stability and mechanical properties of the prepared material. With an increase of temperature above 80 degrees C antibacterial activity against Staphylococcus aureus and Escherichia coil, inversely decreased. Moreover crosslinking provided prolonged controlled drug release with outstanding increase of mechanical properties observed by nanoindentation measurements. Results of the investigation indicated crosslinking as an important parameter for producing material with multifunctional characteristics suitable for drug delivery and tissue engineering.
PB  - Elsevier Sci Ltd, Oxford
T2  - Composites Part B-Engineering
T1  - Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers
EP  - 67
SP  - 58
VL  - 121
DO  - 10.1016/j.compositesb.2017.03.024
ER  - 
@article{
author = "Grković, Mirjana and Stojanović, Dušica B. and Pavlović, Vladimir and Rajilić-Stojanović, Mirjana and Bjelović, Milos and Uskoković, Petar S.",
year = "2017",
abstract = "In this study conditions for green crosslinking with citric acid of chitosan/PEO (polyethylene oxide) nanofibers were evaluated. The thermal in situ crosslinking enabled penetration of crosslinking agent into the matrix providing an improvement of antibacterial activity, thermal stability and mechanical properties of the prepared material. With an increase of temperature above 80 degrees C antibacterial activity against Staphylococcus aureus and Escherichia coil, inversely decreased. Moreover crosslinking provided prolonged controlled drug release with outstanding increase of mechanical properties observed by nanoindentation measurements. Results of the investigation indicated crosslinking as an important parameter for producing material with multifunctional characteristics suitable for drug delivery and tissue engineering.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Composites Part B-Engineering",
title = "Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers",
pages = "67-58",
volume = "121",
doi = "10.1016/j.compositesb.2017.03.024"
}
Grković, M., Stojanović, D. B., Pavlović, V., Rajilić-Stojanović, M., Bjelović, M.,& Uskoković, P. S.. (2017). Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers. in Composites Part B-Engineering
Elsevier Sci Ltd, Oxford., 121, 58-67.
https://doi.org/10.1016/j.compositesb.2017.03.024
Grković M, Stojanović DB, Pavlović V, Rajilić-Stojanović M, Bjelović M, Uskoković PS. Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers. in Composites Part B-Engineering. 2017;121:58-67.
doi:10.1016/j.compositesb.2017.03.024 .
Grković, Mirjana, Stojanović, Dušica B., Pavlović, Vladimir, Rajilić-Stojanović, Mirjana, Bjelović, Milos, Uskoković, Petar S., "Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers" in Composites Part B-Engineering, 121 (2017):58-67,
https://doi.org/10.1016/j.compositesb.2017.03.024 . .
49
33
47