Budimir, Milica D.

Link to this page

Authority KeyName Variants
orcid::0000-0003-0742-0983
  • Budimir, Milica D. (11)
Projects

Author's Bibliography

Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study

Kepić, Dejan P.; Stefanović, Andjela M.; Budimir, Milica D.; Pavlović, Vladimir B.; Bonasera, Aurelio; Scopelliti, Michelangelo; Todorović-Marković, Biljana M.

(2023)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Stefanović, Andjela M.
AU  - Budimir, Milica D.
AU  - Pavlović, Vladimir B.
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Todorović-Marković, Biljana M.
PY  - 2023
UR  - https://www.sciencedirect.com/science/article/pii/S0969806X22005813
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/6176
AB  - Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy.
T2  - Radiation Physics and Chemistry
T2  - Radiation Physics and ChemistryRadiation Physics and Chemistry
T1  - Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study
SP  - 110545
VL  - 202
DO  - 10.1016/j.radphyschem.2022.110545
ER  - 
@article{
author = "Kepić, Dejan P. and Stefanović, Andjela M. and Budimir, Milica D. and Pavlović, Vladimir B. and Bonasera, Aurelio and Scopelliti, Michelangelo and Todorović-Marković, Biljana M.",
year = "2023",
abstract = "Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy.",
journal = "Radiation Physics and Chemistry, Radiation Physics and ChemistryRadiation Physics and Chemistry",
title = "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study",
pages = "110545",
volume = "202",
doi = "10.1016/j.radphyschem.2022.110545"
}
Kepić, D. P., Stefanović, A. M., Budimir, M. D., Pavlović, V. B., Bonasera, A., Scopelliti, M.,& Todorović-Marković, B. M.. (2023). Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry, 202, 110545.
https://doi.org/10.1016/j.radphyschem.2022.110545
Kepić DP, Stefanović AM, Budimir MD, Pavlović VB, Bonasera A, Scopelliti M, Todorović-Marković BM. Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry. 2023;202:110545.
doi:10.1016/j.radphyschem.2022.110545 .
Kepić, Dejan P., Stefanović, Andjela M., Budimir, Milica D., Pavlović, Vladimir B., Bonasera, Aurelio, Scopelliti, Michelangelo, Todorović-Marković, Biljana M., "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study" in Radiation Physics and Chemistry, 202 (2023):110545,
https://doi.org/10.1016/j.radphyschem.2022.110545 . .
4

Photoactive graphene quantum dots/bacterial cellulosehydrogels: Structural, mechanical, and pro-oxidant study

Marković, Zoran M.; Zmejkoski, Danica Z.; Budimir, Milica D.; Bugarova, Nikol; Kleinova, Angela; Kuzman, Sanja B.; Špitalský, Zdeno; Pavlović, Vladimir; Milivojević, Dušan D.; Todorović Marković, Biljana M.

(John Wiley and Sons Inc, 2021)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Zmejkoski, Danica Z.
AU  - Budimir, Milica D.
AU  - Bugarova, Nikol
AU  - Kleinova, Angela
AU  - Kuzman, Sanja B.
AU  - Špitalský, Zdeno
AU  - Pavlović, Vladimir
AU  - Milivojević, Dušan D.
AU  - Todorović Marković, Biljana M.
PY  - 2021
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5988
AB  - Due to their unique structural properties bacterial cellulose (BC) hydrogels find possible usage in many fields such as cosmetology, food industry, or medicine. In this study, photoactive BC hydrogels are investigated through modifications of their structural, mechanical, and pro-oxidant properties resulting from graphene quantum dots (GQDs) encapsulation. Detailed structural analysis is conducted by atomic force microscopy, transmission electron microscopy and scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction method. Dynamic mechanical analysis is performed to study the changes in storage modulus, loss modulus and tan δ. Pro-oxidative properties of new designed composites are tested by electron paramagnetic resonance (EPR). Structural and mechanical analyses show successful encapsulation of GQDs into BC whereas EPR measurements indicate high potential of these composites for singlet oxygen production.
PB  - John Wiley and Sons Inc
T2  - Journal of Applied Polymer Science
T1  - Photoactive graphene quantum dots/bacterial cellulosehydrogels: Structural, mechanical, and pro-oxidant study
DO  - 10.1002/app.51996
ER  - 
@article{
author = "Marković, Zoran M. and Zmejkoski, Danica Z. and Budimir, Milica D. and Bugarova, Nikol and Kleinova, Angela and Kuzman, Sanja B. and Špitalský, Zdeno and Pavlović, Vladimir and Milivojević, Dušan D. and Todorović Marković, Biljana M.",
year = "2021",
abstract = "Due to their unique structural properties bacterial cellulose (BC) hydrogels find possible usage in many fields such as cosmetology, food industry, or medicine. In this study, photoactive BC hydrogels are investigated through modifications of their structural, mechanical, and pro-oxidant properties resulting from graphene quantum dots (GQDs) encapsulation. Detailed structural analysis is conducted by atomic force microscopy, transmission electron microscopy and scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction method. Dynamic mechanical analysis is performed to study the changes in storage modulus, loss modulus and tan δ. Pro-oxidative properties of new designed composites are tested by electron paramagnetic resonance (EPR). Structural and mechanical analyses show successful encapsulation of GQDs into BC whereas EPR measurements indicate high potential of these composites for singlet oxygen production.",
publisher = "John Wiley and Sons Inc",
journal = "Journal of Applied Polymer Science",
title = "Photoactive graphene quantum dots/bacterial cellulosehydrogels: Structural, mechanical, and pro-oxidant study",
doi = "10.1002/app.51996"
}
Marković, Z. M., Zmejkoski, D. Z., Budimir, M. D., Bugarova, N., Kleinova, A., Kuzman, S. B., Špitalský, Z., Pavlović, V., Milivojević, D. D.,& Todorović Marković, B. M.. (2021). Photoactive graphene quantum dots/bacterial cellulosehydrogels: Structural, mechanical, and pro-oxidant study. in Journal of Applied Polymer Science
John Wiley and Sons Inc..
https://doi.org/10.1002/app.51996
Marković ZM, Zmejkoski DZ, Budimir MD, Bugarova N, Kleinova A, Kuzman SB, Špitalský Z, Pavlović V, Milivojević DD, Todorović Marković BM. Photoactive graphene quantum dots/bacterial cellulosehydrogels: Structural, mechanical, and pro-oxidant study. in Journal of Applied Polymer Science. 2021;.
doi:10.1002/app.51996 .
Marković, Zoran M., Zmejkoski, Danica Z., Budimir, Milica D., Bugarova, Nikol, Kleinova, Angela, Kuzman, Sanja B., Špitalský, Zdeno, Pavlović, Vladimir, Milivojević, Dušan D., Todorović Marković, Biljana M., "Photoactive graphene quantum dots/bacterial cellulosehydrogels: Structural, mechanical, and pro-oxidant study" in Journal of Applied Polymer Science (2021),
https://doi.org/10.1002/app.51996 . .
4
5

Supplementary data for the article: Zmejkoski, D. Z.; Marković, Z. M.; Budimir, M. D.; Zdravković, N. M.; Trišić, D. D.; Bugarova, N.; Danko, M.; Kozyrovska, N. O.; Špitalský, Z.; Kleinova, A.; Kuzman, S. B.; Pavlović, V. B.; Todorović Marković, B. M. Photoactive and Antioxidant Nanochitosan Dots/Biocellulose Hydrogels for Wound Healing Treatment. Materials Science & Engineering C 2021, 122, 111925. https://doi.org/10.1016/j.msec.2021.111925.

Zmejkoski, Danica Z.; Marković, Zoran M.; Budimir, Milica D.; Zdravković, Nemanja M.; Trišić, Dijana D.; Bugarova, Nikol; Danko, Martin; Kozyrovska, Natalia O.; Špitalský, Zdeno; Kleinova, Angela; Kuzman, Sanja B.; Pavlović, Vladimir; Todorović Marković, Biljana M.

(Elsevier Ltd, 2021)

TY  - DATA
AU  - Zmejkoski, Danica Z.
AU  - Marković, Zoran M.
AU  - Budimir, Milica D.
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana D.
AU  - Bugarova, Nikol
AU  - Danko, Martin
AU  - Kozyrovska, Natalia O.
AU  - Špitalský, Zdeno
AU  - Kleinova, Angela
AU  - Kuzman, Sanja B.
AU  - Pavlović, Vladimir
AU  - Todorović Marković, Biljana M.
PY  - 2021
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5993
PB  - Elsevier Ltd
T2  - Materials Science & Engineering C
T1  - Supplementary data for the article: Zmejkoski, D. Z.; Marković, Z. M.; Budimir, M. D.; Zdravković, N. M.; Trišić, D. D.; Bugarova, N.; Danko, M.; Kozyrovska, N. O.; Špitalský, Z.; Kleinova, A.; Kuzman, S. B.; Pavlović, V. B.; Todorović Marković, B. M. Photoactive and Antioxidant Nanochitosan Dots/Biocellulose Hydrogels for Wound Healing Treatment. Materials Science & Engineering C 2021, 122, 111925. https://doi.org/10.1016/j.msec.2021.111925.
UR  - https://hdl.handle.net/21.15107/rcub_agrospace_5993
ER  - 
@misc{
author = "Zmejkoski, Danica Z. and Marković, Zoran M. and Budimir, Milica D. and Zdravković, Nemanja M. and Trišić, Dijana D. and Bugarova, Nikol and Danko, Martin and Kozyrovska, Natalia O. and Špitalský, Zdeno and Kleinova, Angela and Kuzman, Sanja B. and Pavlović, Vladimir and Todorović Marković, Biljana M.",
year = "2021",
publisher = "Elsevier Ltd",
journal = "Materials Science & Engineering C",
title = "Supplementary data for the article: Zmejkoski, D. Z.; Marković, Z. M.; Budimir, M. D.; Zdravković, N. M.; Trišić, D. D.; Bugarova, N.; Danko, M.; Kozyrovska, N. O.; Špitalský, Z.; Kleinova, A.; Kuzman, S. B.; Pavlović, V. B.; Todorović Marković, B. M. Photoactive and Antioxidant Nanochitosan Dots/Biocellulose Hydrogels for Wound Healing Treatment. Materials Science & Engineering C 2021, 122, 111925. https://doi.org/10.1016/j.msec.2021.111925.",
url = "https://hdl.handle.net/21.15107/rcub_agrospace_5993"
}
Zmejkoski, D. Z., Marković, Z. M., Budimir, M. D., Zdravković, N. M., Trišić, D. D., Bugarova, N., Danko, M., Kozyrovska, N. O., Špitalský, Z., Kleinova, A., Kuzman, S. B., Pavlović, V.,& Todorović Marković, B. M.. (2021). Supplementary data for the article: Zmejkoski, D. Z.; Marković, Z. M.; Budimir, M. D.; Zdravković, N. M.; Trišić, D. D.; Bugarova, N.; Danko, M.; Kozyrovska, N. O.; Špitalský, Z.; Kleinova, A.; Kuzman, S. B.; Pavlović, V. B.; Todorović Marković, B. M. Photoactive and Antioxidant Nanochitosan Dots/Biocellulose Hydrogels for Wound Healing Treatment. Materials Science & Engineering C 2021, 122, 111925. https://doi.org/10.1016/j.msec.2021.111925.. in Materials Science & Engineering C
Elsevier Ltd..
https://hdl.handle.net/21.15107/rcub_agrospace_5993
Zmejkoski DZ, Marković ZM, Budimir MD, Zdravković NM, Trišić DD, Bugarova N, Danko M, Kozyrovska NO, Špitalský Z, Kleinova A, Kuzman SB, Pavlović V, Todorović Marković BM. Supplementary data for the article: Zmejkoski, D. Z.; Marković, Z. M.; Budimir, M. D.; Zdravković, N. M.; Trišić, D. D.; Bugarova, N.; Danko, M.; Kozyrovska, N. O.; Špitalský, Z.; Kleinova, A.; Kuzman, S. B.; Pavlović, V. B.; Todorović Marković, B. M. Photoactive and Antioxidant Nanochitosan Dots/Biocellulose Hydrogels for Wound Healing Treatment. Materials Science & Engineering C 2021, 122, 111925. https://doi.org/10.1016/j.msec.2021.111925.. in Materials Science & Engineering C. 2021;.
https://hdl.handle.net/21.15107/rcub_agrospace_5993 .
Zmejkoski, Danica Z., Marković, Zoran M., Budimir, Milica D., Zdravković, Nemanja M., Trišić, Dijana D., Bugarova, Nikol, Danko, Martin, Kozyrovska, Natalia O., Špitalský, Zdeno, Kleinova, Angela, Kuzman, Sanja B., Pavlović, Vladimir, Todorović Marković, Biljana M., "Supplementary data for the article: Zmejkoski, D. Z.; Marković, Z. M.; Budimir, M. D.; Zdravković, N. M.; Trišić, D. D.; Bugarova, N.; Danko, M.; Kozyrovska, N. O.; Špitalský, Z.; Kleinova, A.; Kuzman, S. B.; Pavlović, V. B.; Todorović Marković, B. M. Photoactive and Antioxidant Nanochitosan Dots/Biocellulose Hydrogels for Wound Healing Treatment. Materials Science & Engineering C 2021, 122, 111925. https://doi.org/10.1016/j.msec.2021.111925." in Materials Science & Engineering C (2021),
https://hdl.handle.net/21.15107/rcub_agrospace_5993 .

Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment

Zmejkoski, Danica Z.; Marković, Zoran M.; Budimir, Milica D.; Zdravković, Nemanja M.; Trišić, Dijana D.; Bugarova, Nikol; Danko, Martin; Kozyrovska, Natalia O.; Špitalský, Zdeno; Kleinova, Angela; Kuzman, Sanja B.; Pavlović, Vladimir; Todorović Marković, Biljana M.

(Elsevier Ltd, 2021)

TY  - JOUR
AU  - Zmejkoski, Danica Z.
AU  - Marković, Zoran M.
AU  - Budimir, Milica D.
AU  - Zdravković, Nemanja M.
AU  - Trišić, Dijana D.
AU  - Bugarova, Nikol
AU  - Danko, Martin
AU  - Kozyrovska, Natalia O.
AU  - Špitalský, Zdeno
AU  - Kleinova, Angela
AU  - Kuzman, Sanja B.
AU  - Pavlović, Vladimir
AU  - Todorović Marković, Biljana M.
PY  - 2021
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5810
AB  - Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment.
PB  - Elsevier Ltd
T2  - Materials Science & Engineering C
T1  - Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment
SP  - 111925
VL  - 122
DO  - 10.1016/j.msec.2021.111925
ER  - 
@article{
author = "Zmejkoski, Danica Z. and Marković, Zoran M. and Budimir, Milica D. and Zdravković, Nemanja M. and Trišić, Dijana D. and Bugarova, Nikol and Danko, Martin and Kozyrovska, Natalia O. and Špitalský, Zdeno and Kleinova, Angela and Kuzman, Sanja B. and Pavlović, Vladimir and Todorović Marković, Biljana M.",
year = "2021",
abstract = "Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment.",
publisher = "Elsevier Ltd",
journal = "Materials Science & Engineering C",
title = "Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment",
pages = "111925",
volume = "122",
doi = "10.1016/j.msec.2021.111925"
}
Zmejkoski, D. Z., Marković, Z. M., Budimir, M. D., Zdravković, N. M., Trišić, D. D., Bugarova, N., Danko, M., Kozyrovska, N. O., Špitalský, Z., Kleinova, A., Kuzman, S. B., Pavlović, V.,& Todorović Marković, B. M.. (2021). Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. in Materials Science & Engineering C
Elsevier Ltd., 122, 111925.
https://doi.org/10.1016/j.msec.2021.111925
Zmejkoski DZ, Marković ZM, Budimir MD, Zdravković NM, Trišić DD, Bugarova N, Danko M, Kozyrovska NO, Špitalský Z, Kleinova A, Kuzman SB, Pavlović V, Todorović Marković BM. Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. in Materials Science & Engineering C. 2021;122:111925.
doi:10.1016/j.msec.2021.111925 .
Zmejkoski, Danica Z., Marković, Zoran M., Budimir, Milica D., Zdravković, Nemanja M., Trišić, Dijana D., Bugarova, Nikol, Danko, Martin, Kozyrovska, Natalia O., Špitalský, Zdeno, Kleinova, Angela, Kuzman, Sanja B., Pavlović, Vladimir, Todorović Marković, Biljana M., "Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment" in Materials Science & Engineering C, 122 (2021):111925,
https://doi.org/10.1016/j.msec.2021.111925 . .
28
6
26

Graphene quantum dots as singlet oxygen producer or radical quencher The matter of functionalization with urea/thiourea

Jovanović, Svetlana P.; Syrgiannis, Zois; Budimir, Milica D.; Milivojević, Dušan D.; Jovanović, Dragana J.; Pavlović, Vladimir; Papan, Jelena M.; Bartenwerfer, Malte; Mojsin, Marija M.; Stevanović, Milena J.; Todorović-Marković, Biljana

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Syrgiannis, Zois
AU  - Budimir, Milica D.
AU  - Milivojević, Dušan D.
AU  - Jovanović, Dragana J.
AU  - Pavlović, Vladimir
AU  - Papan, Jelena M.
AU  - Bartenwerfer, Malte
AU  - Mojsin, Marija M.
AU  - Stevanović, Milena J.
AU  - Todorović-Marković, Biljana
PY  - 2020
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/5390
AB  - Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensitized oxygen activation. In such a way, GQDs can be used as a theranostic agent in photodynamic therapy. In this work pristine GQDs, GQDs irradiated with gamma rays and GQDs doped with N and N, S atoms are produced using a simple, green approach. By using different techniques (AFM, HRTEM, SEM-EDS, FTIR, XRD, PL and UV-Vis) we investigated structural and optical properties of the new types of GQDs. We showed that GQDs functionalized with thiourea (GQDs-TU) completely lost the ability to produce singlet oxygen (O-1(2)) upon photoexcitation while functionalization with urea (GQDs-U) improves the capability of GQDs to produce O-1(2) upon the same conditions. Thus, presented GQDs modification with urea seems like a promising approach for the production of the efficient photosensitizer. On the opposite, GQDs-TU are efficient . OH quencher. Due to high singlet oxygen production and low cytotoxicity below 100 mu g/mL against HeLa cells, GQDs-U is a good candidate as an agent in photodynamic therapy at this concentration.
PB  - Elsevier, Amsterdam
T2  - Materials Science & Engineering C-Materials for Biological Applications
T1  - Graphene quantum dots as singlet oxygen producer or radical quencher The matter of functionalization with urea/thiourea
VL  - 109
DO  - 10.1016/j.msec.2019.110539
ER  - 
@article{
author = "Jovanović, Svetlana P. and Syrgiannis, Zois and Budimir, Milica D. and Milivojević, Dušan D. and Jovanović, Dragana J. and Pavlović, Vladimir and Papan, Jelena M. and Bartenwerfer, Malte and Mojsin, Marija M. and Stevanović, Milena J. and Todorović-Marković, Biljana",
year = "2020",
abstract = "Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensitized oxygen activation. In such a way, GQDs can be used as a theranostic agent in photodynamic therapy. In this work pristine GQDs, GQDs irradiated with gamma rays and GQDs doped with N and N, S atoms are produced using a simple, green approach. By using different techniques (AFM, HRTEM, SEM-EDS, FTIR, XRD, PL and UV-Vis) we investigated structural and optical properties of the new types of GQDs. We showed that GQDs functionalized with thiourea (GQDs-TU) completely lost the ability to produce singlet oxygen (O-1(2)) upon photoexcitation while functionalization with urea (GQDs-U) improves the capability of GQDs to produce O-1(2) upon the same conditions. Thus, presented GQDs modification with urea seems like a promising approach for the production of the efficient photosensitizer. On the opposite, GQDs-TU are efficient . OH quencher. Due to high singlet oxygen production and low cytotoxicity below 100 mu g/mL against HeLa cells, GQDs-U is a good candidate as an agent in photodynamic therapy at this concentration.",
publisher = "Elsevier, Amsterdam",
journal = "Materials Science & Engineering C-Materials for Biological Applications",
title = "Graphene quantum dots as singlet oxygen producer or radical quencher The matter of functionalization with urea/thiourea",
volume = "109",
doi = "10.1016/j.msec.2019.110539"
}
Jovanović, S. P., Syrgiannis, Z., Budimir, M. D., Milivojević, D. D., Jovanović, D. J., Pavlović, V., Papan, J. M., Bartenwerfer, M., Mojsin, M. M., Stevanović, M. J.,& Todorović-Marković, B.. (2020). Graphene quantum dots as singlet oxygen producer or radical quencher The matter of functionalization with urea/thiourea. in Materials Science & Engineering C-Materials for Biological Applications
Elsevier, Amsterdam., 109.
https://doi.org/10.1016/j.msec.2019.110539
Jovanović SP, Syrgiannis Z, Budimir MD, Milivojević DD, Jovanović DJ, Pavlović V, Papan JM, Bartenwerfer M, Mojsin MM, Stevanović MJ, Todorović-Marković B. Graphene quantum dots as singlet oxygen producer or radical quencher The matter of functionalization with urea/thiourea. in Materials Science & Engineering C-Materials for Biological Applications. 2020;109.
doi:10.1016/j.msec.2019.110539 .
Jovanović, Svetlana P., Syrgiannis, Zois, Budimir, Milica D., Milivojević, Dušan D., Jovanović, Dragana J., Pavlović, Vladimir, Papan, Jelena M., Bartenwerfer, Malte, Mojsin, Marija M., Stevanović, Milena J., Todorović-Marković, Biljana, "Graphene quantum dots as singlet oxygen producer or radical quencher The matter of functionalization with urea/thiourea" in Materials Science & Engineering C-Materials for Biological Applications, 109 (2020),
https://doi.org/10.1016/j.msec.2019.110539 . .
42
15
39

Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity

Kepić, Dejan P.; Ristić, Ivan S.; Marinović-Cincović, Milena; Perusko, Davor; Spitalsky, Zdenko; Pavlović, Vladimir; Budimir, Milica D.; Siffalović, Peter; Dramicanin, Miroslav D.; Micusik, Matej; Kleinova, Angela; Janigova, Ivica; Marković, Zoran M.; Todorović-Marković, Biljana

(Wiley, Hoboken, 2018)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Ristić, Ivan S.
AU  - Marinović-Cincović, Milena
AU  - Perusko, Davor
AU  - Spitalsky, Zdenko
AU  - Pavlović, Vladimir
AU  - Budimir, Milica D.
AU  - Siffalović, Peter
AU  - Dramicanin, Miroslav D.
AU  - Micusik, Matej
AU  - Kleinova, Angela
AU  - Janigova, Ivica
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
PY  - 2018
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4778
AB  - This paper reports a simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene.
PB  - Wiley, Hoboken
T2  - Polymer International
T1  - Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity
EP  - 1127
IS  - 8
SP  - 1118
VL  - 67
DO  - 10.1002/pi.5620
ER  - 
@article{
author = "Kepić, Dejan P. and Ristić, Ivan S. and Marinović-Cincović, Milena and Perusko, Davor and Spitalsky, Zdenko and Pavlović, Vladimir and Budimir, Milica D. and Siffalović, Peter and Dramicanin, Miroslav D. and Micusik, Matej and Kleinova, Angela and Janigova, Ivica and Marković, Zoran M. and Todorović-Marković, Biljana",
year = "2018",
abstract = "This paper reports a simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) (SBS) nanocomposite films employing a vacuum filtration method. Graphene is exfoliated well by an electrochemical procedure and homogeneously dispersed in the polymer matrix. The prepared nanocomposite films were characterized by XRD, Fourier transform IR (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, AFM and SEM. Morphological studies showed that graphene formed a smooth coating over the surface of SBS. The increase in graphene concentration induces the wrinkling of graphene sheets at the composite surface which causes a further increase in surface roughness. The FTIR, Raman and XPS spectra of graphene/SBS nanocomposite films indicate the strong interactions between graphene and the polymer matrix. According to the XRD patterns, introducing SBS into graphene did not modify the graphene structure additionally, i.e. the crystal lattice parameters do not depend on SBS content in graphene/SBS nanocomposite films. The graphene/SBS nanocomposite films also exhibited better hydrophobicity due to the increased surface roughness and lower sheet resistivity (reduced 10 times) compared to exfoliated graphene.",
publisher = "Wiley, Hoboken",
journal = "Polymer International",
title = "Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity",
pages = "1127-1118",
number = "8",
volume = "67",
doi = "10.1002/pi.5620"
}
Kepić, D. P., Ristić, I. S., Marinović-Cincović, M., Perusko, D., Spitalsky, Z., Pavlović, V., Budimir, M. D., Siffalović, P., Dramicanin, M. D., Micusik, M., Kleinova, A., Janigova, I., Marković, Z. M.,& Todorović-Marković, B.. (2018). Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. in Polymer International
Wiley, Hoboken., 67(8), 1118-1127.
https://doi.org/10.1002/pi.5620
Kepić DP, Ristić IS, Marinović-Cincović M, Perusko D, Spitalsky Z, Pavlović V, Budimir MD, Siffalović P, Dramicanin MD, Micusik M, Kleinova A, Janigova I, Marković ZM, Todorović-Marković B. Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. in Polymer International. 2018;67(8):1118-1127.
doi:10.1002/pi.5620 .
Kepić, Dejan P., Ristić, Ivan S., Marinović-Cincović, Milena, Perusko, Davor, Spitalsky, Zdenko, Pavlović, Vladimir, Budimir, Milica D., Siffalović, Peter, Dramicanin, Miroslav D., Micusik, Matej, Kleinova, Angela, Janigova, Ivica, Marković, Zoran M., Todorović-Marković, Biljana, "Simple route for the preparation of graphene/poly(styrene-b-butadiene-b-styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity" in Polymer International, 67, no. 8 (2018):1118-1127,
https://doi.org/10.1002/pi.5620 . .
5
3
5

Semi-transparent, conductive thin films of electrochemical exfoliated graphene

Marković, Z.M.; Budimir, Milica D.; Kepić, Dejan P.; Holclajtner-Antunović, Ivanka; Marinović-Cincović, Milena; Dramicanin, Miroslav D.; Spasojević, V.D.; Perusko, Davor; Spitalsky, Z.; Micusik, M.; Pavlović, Vladimir; Todorović-Marković, Biljana

(Royal Soc Chemistry, Cambridge, 2016)

TY  - JOUR
AU  - Marković, Z.M.
AU  - Budimir, Milica D.
AU  - Kepić, Dejan P.
AU  - Holclajtner-Antunović, Ivanka
AU  - Marinović-Cincović, Milena
AU  - Dramicanin, Miroslav D.
AU  - Spasojević, V.D.
AU  - Perusko, Davor
AU  - Spitalsky, Z.
AU  - Micusik, M.
AU  - Pavlović, Vladimir
AU  - Todorović-Marković, Biljana
PY  - 2016
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4203
AB  - The electrochemical exfoliation of graphite to give one-atom-thick graphene with desirable properties is a green, cost-effective method for high-yield graphene production. This paper presents the results of electrochemical exfoliation of two different graphite precursors under an applied direct current voltage of +12 V. The used characterization techniques (elemental analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-photoelectron spectroscopy, Raman spectroscopy, field emission scanning electron microscopy and atomic force microscopy) showed that the exfoliated powder is highly functionalized with a low carbon/oxygen content that is similar to graphene oxide. The exfoliated graphene sheets dispersed in N,N'-dimethylformamide were deposited on ano-discs by vacuum filtration and transferred to glass ceramic substrates. The thermal annealing of the as-deposited films at 600 degrees C for 30 minutes resulted in an increase in the carbon/oxygen ratio by more than 3 fold and a decrease in the sheet resistance by 25%. The lowest values for the sheet resistance of the annealed graphene thin films were in the range of 0.32 +/- 0.04 to 0.84 +/- 0.1 kohm sq(-1) depending on the graphite source that was used.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Semi-transparent, conductive thin films of electrochemical exfoliated graphene
EP  - 39283
IS  - 45
SP  - 39275
VL  - 6
DO  - 10.1039/c6ra04250c
ER  - 
@article{
author = "Marković, Z.M. and Budimir, Milica D. and Kepić, Dejan P. and Holclajtner-Antunović, Ivanka and Marinović-Cincović, Milena and Dramicanin, Miroslav D. and Spasojević, V.D. and Perusko, Davor and Spitalsky, Z. and Micusik, M. and Pavlović, Vladimir and Todorović-Marković, Biljana",
year = "2016",
abstract = "The electrochemical exfoliation of graphite to give one-atom-thick graphene with desirable properties is a green, cost-effective method for high-yield graphene production. This paper presents the results of electrochemical exfoliation of two different graphite precursors under an applied direct current voltage of +12 V. The used characterization techniques (elemental analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-photoelectron spectroscopy, Raman spectroscopy, field emission scanning electron microscopy and atomic force microscopy) showed that the exfoliated powder is highly functionalized with a low carbon/oxygen content that is similar to graphene oxide. The exfoliated graphene sheets dispersed in N,N'-dimethylformamide were deposited on ano-discs by vacuum filtration and transferred to glass ceramic substrates. The thermal annealing of the as-deposited films at 600 degrees C for 30 minutes resulted in an increase in the carbon/oxygen ratio by more than 3 fold and a decrease in the sheet resistance by 25%. The lowest values for the sheet resistance of the annealed graphene thin films were in the range of 0.32 +/- 0.04 to 0.84 +/- 0.1 kohm sq(-1) depending on the graphite source that was used.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Semi-transparent, conductive thin films of electrochemical exfoliated graphene",
pages = "39283-39275",
number = "45",
volume = "6",
doi = "10.1039/c6ra04250c"
}
Marković, Z.M., Budimir, M. D., Kepić, D. P., Holclajtner-Antunović, I., Marinović-Cincović, M., Dramicanin, M. D., Spasojević, V.D., Perusko, D., Spitalsky, Z., Micusik, M., Pavlović, V.,& Todorović-Marković, B.. (2016). Semi-transparent, conductive thin films of electrochemical exfoliated graphene. in RSC Advances
Royal Soc Chemistry, Cambridge., 6(45), 39275-39283.
https://doi.org/10.1039/c6ra04250c
Marković Z, Budimir MD, Kepić DP, Holclajtner-Antunović I, Marinović-Cincović M, Dramicanin MD, Spasojević V, Perusko D, Spitalsky Z, Micusik M, Pavlović V, Todorović-Marković B. Semi-transparent, conductive thin films of electrochemical exfoliated graphene. in RSC Advances. 2016;6(45):39275-39283.
doi:10.1039/c6ra04250c .
Marković, Z.M., Budimir, Milica D., Kepić, Dejan P., Holclajtner-Antunović, Ivanka, Marinović-Cincović, Milena, Dramicanin, Miroslav D., Spasojević, V.D., Perusko, Davor, Spitalsky, Z., Micusik, M., Pavlović, Vladimir, Todorović-Marković, Biljana, "Semi-transparent, conductive thin films of electrochemical exfoliated graphene" in RSC Advances, 6, no. 45 (2016):39275-39283,
https://doi.org/10.1039/c6ra04250c . .
9
30
15
29

Synthesis and characterization of electrochemically exfoliated graphene-molybdophosphate hybrid materials for charge storage devices

Vujković, Milica J.; Vidoeski, Bojan A.; Jovanović, Svetlana P.; Bajuk-Bogdanović, Danica; Budimir, Milica D.; Marković, Zoran M.; Pavlović, Vladimir; Todorović-Marković, Biljana; Holclajtner-Antunović, Ivanka

(Pergamon-Elsevier Science Ltd, Oxford, 2016)

TY  - JOUR
AU  - Vujković, Milica J.
AU  - Vidoeski, Bojan A.
AU  - Jovanović, Svetlana P.
AU  - Bajuk-Bogdanović, Danica
AU  - Budimir, Milica D.
AU  - Marković, Zoran M.
AU  - Pavlović, Vladimir
AU  - Todorović-Marković, Biljana
AU  - Holclajtner-Antunović, Ivanka
PY  - 2016
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/4097
AB  - A novel electrochemically exfoliated graphene-molybdophosphoric acid nanohybride (EG-MoPA) was prepared via a simple method. Both scanning electron (SEM) and atomic force microscopy (AFM) results show that MoPA clusters are attached to the surfaces of graphene sheets. By changing the mass ratio of EG-MoPA, the morphology of nanohybrid itself can be significantly modulated, from mostly flat graphene like structure at low amount of MoPA to very uneven, wavy surfaces when MoPA is present in higher concentration. The Raman and Fourier transform infra red (FTIR) spectra in conjunction with electrochemical results indicate that strong interaction exists between the components of nanohybride based on charge transfer and electrostatic interaction of graphene sheets and MoPA. The electrochemical performances are improved by synergetic effect of reversible redox properties of MoPA and the double layer capacitance of a high-surface area of the obtained nanohybrides. The higher current capability of EG was achieved by anchoring the small MoPA concentration on the graphene support. The strong bonding of EG with the MoPA prevents acid to dissolve in the electrolyte upon cycling, enabling the stable capacitance behaviour of the low-doped EG sample. The capacitance for the EG doped with the high amount of MoPA was found to be much larger than for EG. However, the obtained capacitance decreases at the beginning of cycling due to the dissolution of excessive amount of surface MoPA, weakly bonded to the graphene support.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Electrochimica Acta
T1  - Synthesis and characterization of electrochemically exfoliated graphene-molybdophosphate hybrid materials for charge storage devices
EP  - 46
SP  - 34
VL  - 217
DO  - 10.1016/j.electacta.2016.09.067
ER  - 
@article{
author = "Vujković, Milica J. and Vidoeski, Bojan A. and Jovanović, Svetlana P. and Bajuk-Bogdanović, Danica and Budimir, Milica D. and Marković, Zoran M. and Pavlović, Vladimir and Todorović-Marković, Biljana and Holclajtner-Antunović, Ivanka",
year = "2016",
abstract = "A novel electrochemically exfoliated graphene-molybdophosphoric acid nanohybride (EG-MoPA) was prepared via a simple method. Both scanning electron (SEM) and atomic force microscopy (AFM) results show that MoPA clusters are attached to the surfaces of graphene sheets. By changing the mass ratio of EG-MoPA, the morphology of nanohybrid itself can be significantly modulated, from mostly flat graphene like structure at low amount of MoPA to very uneven, wavy surfaces when MoPA is present in higher concentration. The Raman and Fourier transform infra red (FTIR) spectra in conjunction with electrochemical results indicate that strong interaction exists between the components of nanohybride based on charge transfer and electrostatic interaction of graphene sheets and MoPA. The electrochemical performances are improved by synergetic effect of reversible redox properties of MoPA and the double layer capacitance of a high-surface area of the obtained nanohybrides. The higher current capability of EG was achieved by anchoring the small MoPA concentration on the graphene support. The strong bonding of EG with the MoPA prevents acid to dissolve in the electrolyte upon cycling, enabling the stable capacitance behaviour of the low-doped EG sample. The capacitance for the EG doped with the high amount of MoPA was found to be much larger than for EG. However, the obtained capacitance decreases at the beginning of cycling due to the dissolution of excessive amount of surface MoPA, weakly bonded to the graphene support.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Electrochimica Acta",
title = "Synthesis and characterization of electrochemically exfoliated graphene-molybdophosphate hybrid materials for charge storage devices",
pages = "46-34",
volume = "217",
doi = "10.1016/j.electacta.2016.09.067"
}
Vujković, M. J., Vidoeski, B. A., Jovanović, S. P., Bajuk-Bogdanović, D., Budimir, M. D., Marković, Z. M., Pavlović, V., Todorović-Marković, B.,& Holclajtner-Antunović, I.. (2016). Synthesis and characterization of electrochemically exfoliated graphene-molybdophosphate hybrid materials for charge storage devices. in Electrochimica Acta
Pergamon-Elsevier Science Ltd, Oxford., 217, 34-46.
https://doi.org/10.1016/j.electacta.2016.09.067
Vujković MJ, Vidoeski BA, Jovanović SP, Bajuk-Bogdanović D, Budimir MD, Marković ZM, Pavlović V, Todorović-Marković B, Holclajtner-Antunović I. Synthesis and characterization of electrochemically exfoliated graphene-molybdophosphate hybrid materials for charge storage devices. in Electrochimica Acta. 2016;217:34-46.
doi:10.1016/j.electacta.2016.09.067 .
Vujković, Milica J., Vidoeski, Bojan A., Jovanović, Svetlana P., Bajuk-Bogdanović, Danica, Budimir, Milica D., Marković, Zoran M., Pavlović, Vladimir, Todorović-Marković, Biljana, Holclajtner-Antunović, Ivanka, "Synthesis and characterization of electrochemically exfoliated graphene-molybdophosphate hybrid materials for charge storage devices" in Electrochimica Acta, 217 (2016):34-46,
https://doi.org/10.1016/j.electacta.2016.09.067 . .
5
5
5

Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy

Jovanović, Svetlana P.; Syrgiannis, Zois; Marković, Zoran M.; Bonasera, Aurelio; Kepić, Dejan P.; Budimir, Milica D.; Milivojević, Dušan D.; Spasojević, Vuk D.; Dramicanin, Miroslav D.; Pavlović, Vladimir; Todorović-Marković, Biljana

(Amer Chemical Soc, Washington, 2015)

TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Syrgiannis, Zois
AU  - Marković, Zoran M.
AU  - Bonasera, Aurelio
AU  - Kepić, Dejan P.
AU  - Budimir, Milica D.
AU  - Milivojević, Dušan D.
AU  - Spasojević, Vuk D.
AU  - Dramicanin, Miroslav D.
AU  - Pavlović, Vladimir
AU  - Todorović-Marković, Biljana
PY  - 2015
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/3755
AB  - Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of gamma-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. The main outcome was that the GQDs irradiated at lower doses act as better photoproducers than the ones irradiated at higher doses. These results corroborate that the structural changes caused by gamma irradiation have a direct impact on GQD ability to produce singlet oxygen and their photostability under prolonged UV illumination. This makes low-dose irradiated GQDs promising candidates for photodynamic therapy.
PB  - Amer Chemical Soc, Washington
T2  - ACS Applied Materials & Interfaces
T1  - Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy
EP  - 25874
IS  - 46
SP  - 25865
VL  - 7
DO  - 10.1021/acsami.5b08226
ER  - 
@article{
author = "Jovanović, Svetlana P. and Syrgiannis, Zois and Marković, Zoran M. and Bonasera, Aurelio and Kepić, Dejan P. and Budimir, Milica D. and Milivojević, Dušan D. and Spasojević, Vuk D. and Dramicanin, Miroslav D. and Pavlović, Vladimir and Todorović-Marković, Biljana",
year = "2015",
abstract = "Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of gamma-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. The main outcome was that the GQDs irradiated at lower doses act as better photoproducers than the ones irradiated at higher doses. These results corroborate that the structural changes caused by gamma irradiation have a direct impact on GQD ability to produce singlet oxygen and their photostability under prolonged UV illumination. This makes low-dose irradiated GQDs promising candidates for photodynamic therapy.",
publisher = "Amer Chemical Soc, Washington",
journal = "ACS Applied Materials & Interfaces",
title = "Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy",
pages = "25874-25865",
number = "46",
volume = "7",
doi = "10.1021/acsami.5b08226"
}
Jovanović, S. P., Syrgiannis, Z., Marković, Z. M., Bonasera, A., Kepić, D. P., Budimir, M. D., Milivojević, D. D., Spasojević, V. D., Dramicanin, M. D., Pavlović, V.,& Todorović-Marković, B.. (2015). Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy. in ACS Applied Materials & Interfaces
Amer Chemical Soc, Washington., 7(46), 25865-25874.
https://doi.org/10.1021/acsami.5b08226
Jovanović SP, Syrgiannis Z, Marković ZM, Bonasera A, Kepić DP, Budimir MD, Milivojević DD, Spasojević VD, Dramicanin MD, Pavlović V, Todorović-Marković B. Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy. in ACS Applied Materials & Interfaces. 2015;7(46):25865-25874.
doi:10.1021/acsami.5b08226 .
Jovanović, Svetlana P., Syrgiannis, Zois, Marković, Zoran M., Bonasera, Aurelio, Kepić, Dejan P., Budimir, Milica D., Milivojević, Dušan D., Spasojević, Vuk D., Dramicanin, Miroslav D., Pavlović, Vladimir, Todorović-Marković, Biljana, "Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy" in ACS Applied Materials & Interfaces, 7, no. 46 (2015):25865-25874,
https://doi.org/10.1021/acsami.5b08226 . .
1
95
67
107

The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing

Prekodravac, Jovana; Marković, Zoran; Jovanović, Svetlana P.; Budimir, Milica D.; Perusko, Davor; Holclajtner-Antunović, Ivanka; Pavlović, Vladimir; Syrgiannis, Zois; Bonasera, Aurelio; Todorović-Marković, Biljana

(Elsevier Science Sa, Lausanne, 2015)

TY  - JOUR
AU  - Prekodravac, Jovana
AU  - Marković, Zoran
AU  - Jovanović, Svetlana P.
AU  - Budimir, Milica D.
AU  - Perusko, Davor
AU  - Holclajtner-Antunović, Ivanka
AU  - Pavlović, Vladimir
AU  - Syrgiannis, Zois
AU  - Bonasera, Aurelio
AU  - Todorović-Marković, Biljana
PY  - 2015
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/3685
AB  - In this paper, we performed synthesis of graphene thin films by rapid thermal annealing (RTA) of thin nickel copper (Ni/Cu) layers deposited on spectroscopic graphite as a carbon source. Furthermore, we investigated the effect of annealing temperature and annealing time on formation and quality of synthesized graphene films. Raman spectroscopy study showed that annealing at lower temperatures results in formation of monolayer graphene films, while annealing at higher temperatures results in formation of multilayer graphene films. We used Raman mapping to determine the distribution of graphene sheets. Surface morphology of graphene thin films was investigated by atomic force microscopy and scanning electron microscopy with EDS probe.
PB  - Elsevier Science Sa, Lausanne
T2  - Synthetic Metals
T1  - The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing
EP  - 467
SP  - 461
VL  - 209
DO  - 10.1016/j.synthmet.2015.08.015
ER  - 
@article{
author = "Prekodravac, Jovana and Marković, Zoran and Jovanović, Svetlana P. and Budimir, Milica D. and Perusko, Davor and Holclajtner-Antunović, Ivanka and Pavlović, Vladimir and Syrgiannis, Zois and Bonasera, Aurelio and Todorović-Marković, Biljana",
year = "2015",
abstract = "In this paper, we performed synthesis of graphene thin films by rapid thermal annealing (RTA) of thin nickel copper (Ni/Cu) layers deposited on spectroscopic graphite as a carbon source. Furthermore, we investigated the effect of annealing temperature and annealing time on formation and quality of synthesized graphene films. Raman spectroscopy study showed that annealing at lower temperatures results in formation of monolayer graphene films, while annealing at higher temperatures results in formation of multilayer graphene films. We used Raman mapping to determine the distribution of graphene sheets. Surface morphology of graphene thin films was investigated by atomic force microscopy and scanning electron microscopy with EDS probe.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Synthetic Metals",
title = "The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing",
pages = "467-461",
volume = "209",
doi = "10.1016/j.synthmet.2015.08.015"
}
Prekodravac, J., Marković, Z., Jovanović, S. P., Budimir, M. D., Perusko, D., Holclajtner-Antunović, I., Pavlović, V., Syrgiannis, Z., Bonasera, A.,& Todorović-Marković, B.. (2015). The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing. in Synthetic Metals
Elsevier Science Sa, Lausanne., 209, 461-467.
https://doi.org/10.1016/j.synthmet.2015.08.015
Prekodravac J, Marković Z, Jovanović SP, Budimir MD, Perusko D, Holclajtner-Antunović I, Pavlović V, Syrgiannis Z, Bonasera A, Todorović-Marković B. The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing. in Synthetic Metals. 2015;209:461-467.
doi:10.1016/j.synthmet.2015.08.015 .
Prekodravac, Jovana, Marković, Zoran, Jovanović, Svetlana P., Budimir, Milica D., Perusko, Davor, Holclajtner-Antunović, Ivanka, Pavlović, Vladimir, Syrgiannis, Zois, Bonasera, Aurelio, Todorović-Marković, Biljana, "The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing" in Synthetic Metals, 209 (2015):461-467,
https://doi.org/10.1016/j.synthmet.2015.08.015 . .
22
10
22

Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots

Kepić, Dejan P.; Marković, Zoran M.; Jovanović, Svetlana P.; Perusko, Davor; Budimir, Milica D.; Holclajtner-Antunović, Ivanka; Pavlović, Vladimir; Todorović-Marković, Biljana

(Elsevier Science Sa, Lausanne, 2014)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Perusko, Davor
AU  - Budimir, Milica D.
AU  - Holclajtner-Antunović, Ivanka
AU  - Pavlović, Vladimir
AU  - Todorović-Marković, Biljana
PY  - 2014
UR  - http://aspace.agrif.bg.ac.rs/handle/123456789/3443
AB  - Enhanced conductivity, transparency and stability are the most important factors to consider in order to prepare electrodes for optoelectronic devices. In this paper, we investigated the properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films doped with graphene and graphene quantum dots. Samples were deposited by spin-coating onto glass substrates. Thin films were characterized by UV-vis and Raman spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and four-point probe measurements. It was found that both graphene and graphene quantum dots improve the conductivity of PEDOT:PSS films with only small decrease in transparency. AFM and SEM analysis showed homogenous distribution of spherical nanoparticles of graphene quantum dots and irregular shaped nanoparticles of graphene in PEDOT:PSS.
PB  - Elsevier Science Sa, Lausanne
T2  - Synthetic Metals
T1  - Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots
EP  - 154
SP  - 150
VL  - 198
DO  - 10.1016/j.synthmet.2014.10.017
ER  - 
@article{
author = "Kepić, Dejan P. and Marković, Zoran M. and Jovanović, Svetlana P. and Perusko, Davor and Budimir, Milica D. and Holclajtner-Antunović, Ivanka and Pavlović, Vladimir and Todorović-Marković, Biljana",
year = "2014",
abstract = "Enhanced conductivity, transparency and stability are the most important factors to consider in order to prepare electrodes for optoelectronic devices. In this paper, we investigated the properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films doped with graphene and graphene quantum dots. Samples were deposited by spin-coating onto glass substrates. Thin films were characterized by UV-vis and Raman spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and four-point probe measurements. It was found that both graphene and graphene quantum dots improve the conductivity of PEDOT:PSS films with only small decrease in transparency. AFM and SEM analysis showed homogenous distribution of spherical nanoparticles of graphene quantum dots and irregular shaped nanoparticles of graphene in PEDOT:PSS.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Synthetic Metals",
title = "Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots",
pages = "154-150",
volume = "198",
doi = "10.1016/j.synthmet.2014.10.017"
}
Kepić, D. P., Marković, Z. M., Jovanović, S. P., Perusko, D., Budimir, M. D., Holclajtner-Antunović, I., Pavlović, V.,& Todorović-Marković, B.. (2014). Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots. in Synthetic Metals
Elsevier Science Sa, Lausanne., 198, 150-154.
https://doi.org/10.1016/j.synthmet.2014.10.017
Kepić DP, Marković ZM, Jovanović SP, Perusko D, Budimir MD, Holclajtner-Antunović I, Pavlović V, Todorović-Marković B. Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots. in Synthetic Metals. 2014;198:150-154.
doi:10.1016/j.synthmet.2014.10.017 .
Kepić, Dejan P., Marković, Zoran M., Jovanović, Svetlana P., Perusko, Davor, Budimir, Milica D., Holclajtner-Antunović, Ivanka, Pavlović, Vladimir, Todorović-Marković, Biljana, "Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots" in Synthetic Metals, 198 (2014):150-154,
https://doi.org/10.1016/j.synthmet.2014.10.017 . .
3
27
18
27