The synthesis and preliminary pharmacological evaluation of the racemic cis and trans 3-alkylfentanyl analogues

M. D. IVANOVIĆa ${ }^{* \# \#}$, I. V. MIĆOVIĆ ${ }^{\text {a, } \dagger, ~ S . ~ V U C ̌ K O V I C ́ b ~}{ }^{\text {b }}$, M. PROSTRAN ${ }^{\text {b }}$, Z. TODOROVIĆb ${ }^{\text {, }}$ V. D. KIRICOJEVIĆc\#, J. B. DJORDJEVIĆd and LJ. DOŠEN-MIĆOVIĆa\#

${ }^{a}$ Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, ${ }^{\text {b }}$ Department of Clinical Pharmacology, Pharmacology and Toxicology, School of Medicine, University of Belgrade, Dr Subotića 1,
 riculture, University of Belgrade, Nemanjina 6, 11080 Zemun, Serbia and Montenegro (e-mail: misai@helix.chem.bg.ac.yu)
(Received 9 September, revised 4 February 2004)
Abstract: A general, five step method for the synthesis of 3-alkylfentanyl analogues (i.e., cis and trans 3 -alkyl-4-anilidopiperidines $\mathbf{6 . 1 - 6 . 6}$) has been developed. The starting N-phene-thyl-4-piperidone 1 was first converted into the cyclohexylimine derivative $\mathbf{2}, \alpha$-deprotonated with butyllithium and the resulting imine anion efficiently monoalkylated with primary and secondary alkyl halides. After mild acid hydrolysis, the obtained 3-alkyl-4-piperidones 3.1-3.6 were isolated in good yields ($79-85 \%$), then condensed with aniline to form imines 4.1-4.6. Subsequent reduction of the imines $\left(\mathrm{LiAlH}_{4} / \mathrm{THF}\right)$ yielded cis/trans mixtures of 3-alkyl-4-anilinopiperidines 5.1-5.6. Quantitative separation of the diastereoisomers by column chromatography of $\mathrm{Al}_{2} \mathrm{O}_{3}$ gave pure cis 5.1-5.6 (29-51 \% yield) and trans 5.1-5.6 (19-27 \% yield), with the cis/trans ratio in the range 7/3-6/4. The synthesis was concluded by N-acylation of the purified 5.1-5.6, with propionyl chloride, to afford cis and trans 3-al-kyl-4-anilidopiperidines 6.1-6.6 ($\approx 95 \%$ yield, as monooxalate salts). No enatioseparation was attempted at any stage. The relative cis/trans stereochemistry was provisionally assigned from the ${ }^{1} \mathrm{H}$-NMR spectra. Of the twelve synthesized 3-alkylfentanyls, ten compounds (two known and eight novel derivatives, all as the monooxalate salts) were preliminarily tested as analgesics in rats, comparing the potency to fentanyl. Except for the known (\pm)-cis-3-Me fentanyl 6.1cis, $(8 \times$ fentanyl $)$, and the novel (\pm)-cis-3-Et fentanyl 6.2 cis, $(1.5 \times$ fentanyl $)$, all of the others were less active than fentanyl or inactive. Some tentative conclusions on the struc-ture-activity relationship (SAR) in this series of derivatives have been made.

INTRODUCTION

The exceptional opioid analgesic activity of 4-anilidopiperidines (general structure I, Scheme 1) has been well documented in the past forty years. ${ }^{1}$ Clinically successful drugs, * Author for correspondence.
\# Serbian Chemical Society active member.
\dagger Deceased on 10 October 2001.

fentanyl $I I,{ }^{2}$ (a $50-100$ times more potent analgesic in humans than morphine), sufentanil $I I I,{ }^{2}\left(\approx 6 \times\right.$ fentany ${ }^{3}$), alfentanil $I V,{ }^{2}\left(\approx 0.13 \times\right.$ fentany $\left.{ }^{4}\right)$ and remifentanil $V, 2(\approx 2.5-5 \times$ fentany ${ }^{5}$) have been used extensively. Combined with various anesthetics, they have been employed in most of the major and minor surgeries, under the general anesthesia. Fentanyl and its derivatives are also widely used in conscious patients, to manage postoperative pain, in obstetrics and during various orthopedic interventions. Fentanyl transdermal patches (Duragesic ${ }^{\circledR}$), with controlled drug release over several days, serve to control chronic cancer pain. ${ }^{6}$ Carfentanil $V I\left(\approx 20-30 \times\right.$ fentany $\left.{ }^{\text {la }}\right)$ is a veterinary analgesic, used to sedate wild animals. ${ }^{7}$ Numerous fentanyl analogues have been synthesized, ${ }^{8}$ as potential candidates for novel drugs, in order to establish the structure-activity relationship (SAR) and to probe the opioid receptors. Isotopically labelled fentanyl derivatives have been employed in opioid receptor studies, both in vitro and in vivo. For example, positron emission tomography, (PET), with ${ }^{11} \mathrm{C}$ labelled carfentanyl, has been used in healthy volunteers to observe the opioid receptor distribution in the body organs and other receptor properties. ${ }^{9}$

Some thirty years ago it was disclosed that a methyl group introduced in the position 3 of the piperidine ring may dramatically enhance the activity, depending on the relative and the absolute stereochemistry. ${ }^{10}$ Thus (+)-cis-3-Me fentanyl VII ($\approx 19 \times$ fentanyl) is ca. 100 times more potent as the (- -enantiomer. The corresponding racemic trans isomer is approximately as active as fentanyl. ${ }^{10 \mathrm{~b}}$ Of the other 3 -alkyl derivatives, only 3 -Pr and 3 -allyl analogues have been prepared up to the present ${ }^{11}$ (Table II). Also, in an earlier work, 3-methoxycarbonyl fentanyl was synthesized. ${ }^{8 c}$

These facts prompted us to prepare several novel 3-alkylfentanyl derivatives (general structure 6, Scheme 2) and to establish the correlation between the structure (including stereochemistry) of the 3 -alkyl group and the analgesic activity.

$\underline{6.1}=$ Me; $\underline{6.2}=\operatorname{Et} ; \underline{6.3}=i-\operatorname{Pr} ; \underline{6.4}=\operatorname{Bu} ; \underline{6.5}=$ Benzyl; $\underline{6.6}=$ Phenethyl
Scheme 2.

RESULTS AND DISCUSSION

The five step synthesis, starting from piperidone 1, is outlined in Scheme 2. The requisite piperidones 3.1-3.6 were prepared by a modification of a general method for the
monoalkylation of carbonyl compounds via the imine or hydrazone derivatives. ${ }^{12}$ Condensation of $\mathbf{1}$ and cyclohexylamine under azeotropic water separation gave imine $\mathbf{2}$. The completion of the reaction was determined by IR spectroscopy (absence of the carbonyl band at $\approx 1710 \mathrm{~cm}^{-1}$, presence of the imine band at $\approx 1665 \mathrm{~cm}^{-1}$).

Deprotonation of $\mathbf{2}$ with butyllithium (THF, 10°) proceeded rapidly (like a titration) and quantitatively, yielding a bright, orange-red solution of the imine anion. No 1,2-addition reaction of butyllithium to the ketimine group was observed, as hydrolysis of the anion recovered only the starting piperidone 1. The use of LDA instead of butyllithium was equally effective but offered no advantage in terms of the yields and purity of the products. The imine anion reacted rapidly with primary and secondary alkyl halides, MeI, EtI, i-PrI, BuBr and phenethyl bromide (PhenBr), to yield only the monoalkylated imine intermediates. Completion of the alkylation is observable visually, since the orange-red coloration of the anion changes to pale yellow. The imines are hydrolysed completely in situ, by the addition of an aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution ($\mathrm{pH} \approx 5-6$), to afford good yields ($79-85 \%$) of the corresponding 3-alkylpiperidones 3.1-3.6. Only in the case of the $3-i-\operatorname{Pr}$ derivative, the hydrolysis required lower pH (dil. HCl), apparently due to steric hindrance. Importantly, the obtained ketones were pure ($\approx 95-98 \%$), containing neither polyalkylated products nor the starting piperidone $1\left(0-3 \%\right.$, acc to cap. GC and $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$.

Conversion of piperidones 3.1-3.6 to the respective stereoisomeric 3-alkyl-4-anilinopiperidines 5.1-5.6 was effected in two steps, via the aromatic imine intermediates 4.1-4.6. Similar procedures were applied earlier on some related systems. ${ }^{13}$ The piperidones react with aniline (2 eq.) relatively slowly ($12-36 \mathrm{~h}$, depending on the steric hindrance), requiring boiling xylene and azeotropic water separation, as well as a Lewis acid catalyst ($10 \mathrm{~mol} \%$ of anh. ZnCl_{2}). In addition, the high sensitivity of the imines 4.1-4.6 to oxidative decomposition necessitates an inert atmosphere (Ar or N_{2}). Completion of the condensation was indicated by IR spectroscopy (disappearance of the carbonyl band at $\approx 1710 \mathrm{~cm}^{-1}$, appearance of the imine band at $\approx 1660 \mathrm{~cm}^{-1}$). Monitoring the reaction by TLC, GC or HPLC was not possible due to the rapid hydrolysis or decomposition of the imine.

The crude imines, together with the residual aniline, were then reduced using LiAlH_{4} (4 eq. of H^{-}). The reduction was found to be sluggish in ether, but much faster in THF. Thus, it required $\approx 5-10 \mathrm{~h}$ to complete, depending on the steric hindrance of the imine. However, the reaction conditions had not been optimised with respect to the reaction time and the hydride mole ratio.

After the standard workup (excess hydride destruction with EtOAc and successive treatment with aqueous acid and alkali), the isolated residues consisted of cis/trans mixtures of the corresponding 3-alkyl-4-anilinopiperidine 5.1-5.6, aniline and small amounts of the corresponding 3-alkylpiperidine-4-ol, (0-10 \%, cis/trans mixture). The alcohols apparently originated from a partial hydrolysis of the imine, prior to reduction. After vacuum removal of the residual aniline and quantitative column chromatography separation on $\mathrm{Al}_{2} \mathrm{O}_{3}$, pure cis-5.1-5.6 and trans-5.1-5.6 diastereoisomers were obtained in all instances.

Yields of the pure 3-alkyl-4-anilinopiperidines ranged from 29-51 \% for the cis isomers and from $19-27 \%$ for the trans isomers, with the cis/trans ratio $\approx 7 / 3-6 / 4$. Interestingly, the
diastereoisomers could not be separated by capillary GC nor on SiO_{2} plates or columns, possibly due to a stronger, specific binding of the amines to silica as compared to alumina. The diastereoisomeric purity of $\mathbf{5 . 1}-\mathbf{5 . 6}$ was determined to be $\approx 100 \%$, by ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The relative, cis/trans stereochemistry of the products was assigned from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the corresponding 3-alkyl-4-anilidopiperidines 6.1-6.6. Reduction procedures of imines 4.1-4.6 with some other reagents were examined briefly, following literature reports for related systems. Thus, reduction with $\mathrm{NaBH}_{3} \mathrm{CN}$ in MeOH or in a buffered methanolic solution ${ }^{14}$ (citrate or acetate buffer, $\mathrm{pH} \approx 5-6$) produced very substantial amounts of the corresponding 3-alkylpiperidin-4-ol, due to the rapid hydrolysis of the imines by traces of moisture. Similarly, the alcohols predominated when reduction of the imines was attempted with a large excess of NaBH_{4} in $\mathrm{MeOH}, \mathrm{EtOH}$ or i-PrOH. ${ }^{15}$ Catalytic hydrogenation ${ }^{16}$ over $10 \% \mathrm{Pd} / \mathrm{C}$ in $\mathrm{MeOH}, \mathrm{MeOH} /$ buffer or $\mathrm{EtOAc} / \mathrm{AcOH}$, at 3-20 atm, was either exceedingly slow or led to hydrolysis and subsequent reduction to the alcohols.

Having prepared a total of 12 diastereoisomerically pure cis and trans anilinopiperidines 5.1-5.6, the synthesis of the 3-alkylfentanyl analogues was completed by N -acylation of the secondary amino function, using propionyl chloride (2 eq .) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Despite the tertiary amino group in the piperidine ring serving as an HCl acceptor, it was found necessary to add extra base (0.5 eq. of $E t_{3} \mathrm{~N}$) to bring the reaction to completion. The obtained cis and trans anilidopiperidines $\mathbf{6 . 1 - 6 . 6}$, where isolated and purified as the monooxalate salts, precipitated from $i-\mathrm{PrOH}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}$ or EtOAc ($>95 \%$ yields).

The relative, cis/trans stereochemistry was assigned by comparing the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data of cis and trans $\mathbf{6 . 1 - 6 . 6}$ to the published spectra ${ }^{10 \mathrm{~b}}$ of cis- and trans-3-Me fentanyl 6.1, as represented in Table I. In the later instance, the absolute stereochemistry was determined by X-ray diffraction analysis. It was established that all of the prepared anilidopiperidines exhibit very specific ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals of the $\mathrm{C}_{4}-\mathrm{H}$ group in the piperidine ring. The signals possess a distinctive multiplicity and chemical shift, depending on the relative stereochemistry, Fig. 1. All the cis isomers, including cis-3-Me fentanyl 6.1cis, display a fully resolved doublet of triplets $\left(J_{\mathrm{t}} \approx 4 \mathrm{~Hz}, J_{\mathrm{d}} \approx 12 \mathrm{~Hz}\right.$), except for $\mathbf{6 . 3} \mathbf{c i s}$, (3-i-Pr), which shows an apparent quintet. The chemical shifts, compared to the corresponding trans isomers, have uniformly lower values by $\approx 0.2 \delta$. The trans isomers show either triplets ($J_{\mathrm{t}} \approx 11-12 \mathrm{~Hz}$), with additional partial splitting into doublets or fully resolved triplets of doublets as in the case of 6.5 trans compound (3-Phen, $J_{\mathrm{d}}=4 \mathrm{~Hz}, J_{\mathrm{t}}=11$ Hz). Thus, the relative stereochemistry of the synthesized fentanyl derivatives may be considered as being provisionally assigned with a considerable degree of certainty.

Ten of the synthesized compounds, all in the racemic form, were tested as opioid analgesics (i.e., for antinociceptive activity) and compared with the potency to fentanyl. Those included two known compounds, cis-3-Me fentanyl 6.1cis and trans-3-Me fentanyl 6.1trans, as well as eight novel derivatives: cis-3-Et fentanyl 6.2cis, trans-3-Et fentanyl 6.2trans, cis-3-i-Pr fentanyl 6.3cis, cis-3-Bu fentanyl 6.4cis, trans-3-Bu fentanyl 6.4trans, cis-3-Bn fentanyl 6.5cis, trans-3-Bn fentanyl 6.5trans and cis-3-Phen fentanyl 6.6cis.

Wistar type rats (weighing 200-300 g) of both sexes were used in all the experiments. The analgesic (antinociceptive) activity was assessed by measuring the warm water in-
duced tail withdrawal reflex ${ }^{17}$ after intraperitoneal administration of the oxalate salts of the tested compounds. Three doses of each compound were tested with 6-8 rats per dose and the obtained dose-response curves analysed using the linear regression statistical method. The ED_{50} values and the 95% confidence limits were estimated from the dose-response curves using a standard statistical software. ${ }^{18}$

TABLE I. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals of the $\mathrm{C}_{4}-\mathrm{H}$ group of cis and trans 3-alkyl-4-anilidopiperidines 6.1-6.6.
Chemical shift in ppm, coupling constants in Hz

No.	Compound	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{4}-\mathrm{H}\right.$ signal)	No.	Compound	${ }^{1} \mathrm{H}$-NMR ($\mathrm{C}_{4}-\mathrm{H}$ signal $)$
1	6.1 cis (3-Me)	$\begin{gathered} 4.41\left(d t, J_{\mathrm{t}}=4.4,\right. \\ \left.J_{\mathrm{d}}=12.6\right)^{\#} \end{gathered}$	7	6.4 cis (3-Bu)	$\begin{gathered} 4.38\left(d t, J_{\mathrm{t}}=4.5,\right. \\ \left.J_{\mathrm{d}}=12.4\right) \end{gathered}$
2	6.1 trans (3-Me)	$4.58(t, J=11.4)^{\#}$	8	6.4 trans (3-Bu)	$4.61(t, J=7.0)$
3	6.2 cis (3-Et)	$\begin{gathered} 4.40\left(d t, J_{\mathrm{t}}=4.6,\right. \\ \left.J_{\mathrm{d}}=12.4\right) \end{gathered}$	9	6.5 cis (3-Bn)	$\begin{gathered} 4.49\left(d t, J_{\mathrm{t}}=3.4,\right. \\ \left.J_{\mathrm{d}}=12.4\right) \end{gathered}$
4	6.2 trans (3-Et)	$\begin{gathered} 4.61\left(t d, J_{\mathrm{d}}=3,\right. \\ \left.J_{\mathrm{t}}=12\right) \end{gathered}$	10	6.5 trans (3-Bn)	$4.75(t, J=10.0)$
5	6.3 cis (3-Pr)	4.60 (quint, $J=5.0)$	11	6.6 cis (3-Phen)	$\begin{gathered} 4.37\left(d t, J_{\mathrm{t}}=4.6,\right. \\ \left.J_{\mathrm{d}}=12.6\right) \end{gathered}$
6	6.3 trans (3-Pr)	$\begin{gathered} 4.83\left(t d, J_{\mathrm{d}}=3.6,\right. \\ \left.J_{\mathrm{t}}=12.0\right) \end{gathered}$	12	6.5 trans (3-Phen)	$\begin{gathered} 4.64\left(t d, J_{\mathrm{d}}=4.0,\right. \\ \left.J_{\mathrm{t}}=11.0\right) \end{gathered}$

${ }^{\#}$ Lit. values ${ }^{10 \mathrm{~b}}$ for 6.1 cis: $4.40 \delta\left(d t, J_{\mathrm{t}}=5.0, J_{\mathrm{d}}=12.5\right)$; 6.1 trans: $4.53 \delta\left(t d, J_{\mathrm{d}}=4.5, J_{\mathrm{t}}=12.5\right)$

Fig. 1. Characteristic signals of the $\mathrm{C}_{4}-\mathrm{H}$ proton in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of cis-3-Me fentanyl 6.1cis and trans 3-Me fentanyl 6.1trans. The signals are typical for all of the synthesized cis-and trans-3-alkylfentanyl analogues, respectively.

The absolute analgesic (antinociceptive) potencies, expressed as the ED_{50} value (dose that produced 50% of the maximum possible antinociceptive effect), as well as the potencies relative to fentanyl are presented in Table II. For comparison, the literature values for
(\pm)-cis-3-Me fentanyl 6.1cis, $(\pm$)-trans-3-Me fentanyl 6.1trans, (-)-cis-3-Me fentanyl, $(+)$-cis-3-Me fentanyl, (\pm)-cis-3-allyl fentanyl, (\pm)-cis-3-Pr fentanyl, (\pm)-trans-3-Pr fentanyl and morphine are also induded in Table II.

Based upon the preliminary results of the pharmacologic testing and in agreement with the published data, summarized in Table II, some tentative conclusions on the struc-ture-activity relationship may be put forward.

- The presence of a substituent in position 3 of the piperidine ring generally decreases or completely inhibits the analgesic activity compared to fentanyl. Exceptions are the $(+)$-cis-3-Me analogue ($\approx 19 \times$ fentanyl) and (\pm)-cis-3-Et fentanyl 6.2 cis ($\approx 1.5 \times$ fentanyl). In the later instance, presumably, one of the enantiomers was much more active than the other.
- With increasing voluminosity of the alkyl group, the potency decreases rapidly. Thus (\pm)-cis-3-Pr fentanyl, (\pm)-cis-3-Bu fentanyl 6.4cis, and (\pm)-cis-3-Bn fentanyl 6.5 cis, are 2,16 and 126 times less potent than fentanyl, respectively. Derivatives which are even more bulky, (\pm)-cis-3-i-Pr fentanyl 6.3cis, and (\pm)-cis-3-Phen fentanyl 6.6cis, are inactive in doses up to $5 \mathrm{mg} / \mathrm{kg}$.
- The relative cis/trans stereochemistry is important since the cis isomers are 1.5-6 times more active than the trans isomers.
- The absolute stereochemistry appears to be critical, judging from the fact that $(+)$-cis-3-Me fentanyl is about 100 times more active than the $(-)$ enantiomer.

All of the tested compounds exhibited toxic effects characteristic for the μ selective opioid agonists, (such as morphine and fentanyl), including: Straub's tail, rigidity of the skeletal muscles, catalepsy, loss of the corneal and righting reflexes, impaired motoric coordination, and increased and/or decreased body temperature. All of the observed effects were fully antagonized by the nonselective opioid antagonist naloxone hydrochloride ${ }^{19}$ $(1 \mathrm{mg} / \mathrm{kg})$, corroborating the hypothesis that the tested compounds are opioid agonists, most likely acting predominantly of μ opioid receptors. The detailed pharmacological results will be published elsewhere.

In conclusion, the presented synthetic method provides access to various 3-al-kyl-4-anilidopiperidines $\mathbf{6 . 1 - 6 . 6}$. The approach is relatively concise and efficient, except for the conversion of piperidones $\mathbf{3 . 1}-\mathbf{3 . 6}$ to the anilinopiperidines $5.1-5.6$ which is tedious and of low stereoselectivity, yielding cis/trans mixtures. However, as the diastereomeric mixtures are fully separable by simple column chromatography, the synthesis affords pure (\pm)-cis and (\pm)-trans 3-alkyl-4-anilidopiperidines $\mathbf{6 . 1 - 6 . 6}$. The method may be useful, inter alia, to introduce isotopically labelled groups $\left({ }^{13} \mathrm{C},{ }^{14} \mathrm{C},{ }^{11} \mathrm{C},{ }^{15} \mathrm{~N}\right)$, via the corresponding alkyl halides. In addition to simple alkyl groups, it is also possible to introduce some functional groups, compatible with the strongly basic imine anion (e.g., amino, ether, ketal, carboxylate anion). ${ }^{20}$

Pharmacological results unambiguously show that all groups in the position 3 of the piperidine ring larger than methyl (and to a minimal extent ethyl), severely reduce the analgesic potency compared to fentanyl. It is likely that the steric factor alone, rather than the polarity and/or chemical reactivity, plays a crucial role in the pharmacological activity in
this series. Probably the more voluminous groups prevent the ligands from forming a sufficiently stable complex with the receptor, resulting in decreased analgesic activity.

TABLE II. Analgesic (antinociceptive) activities of 3-alkyl fentanyl analogues in the rat tail withdrawal test after intravenous (iv) and intraperitoneal (ip) administration (all the values differ considerably in humans)

No.	Compound	Route of administration	$\begin{gathered} \mathrm{ED}_{50} /(\mathrm{mg} / \mathrm{kg})^{\mathrm{A}} \\ \text { (confidence limits) } \end{gathered}$	Relative potency
1	Fentanyl	iv	$0.011^{\text {B }}$ (0.0095-0.0140)	1
		ip	$0.0104^{\text {C }}$ (0.006-0.018)	1
2	(\pm)-cis-3-Me Fentanyl 6.1cis	iv	$0.0018^{\text {B,ref 10b }}$ (0.0013-0.0024)	6.1
		ip	$0.0013{ }^{\text {C }}$ (0.0012-0.0014)	8
3	(\pm)-trans-3-Me Fentanyl 6.1trans	iv	$0.0094{ }^{\text {B,ref 10b }}$ (0.007-0.0127)	1.17
		ip	$0.00525^{\text {C }}$ (0.004-0.006)	1.98
4	(-)-cis-3-Me Fentanyl	iv	$0.068^{\text {B,ref 10b }}$ (0.051-0.091)	0.16
5	(+)-cis-3-Me Fentanyl	iv	$0.00058^{\text {B,ref 10b }}$ (0.00049-0.00068)	18.97
6	(\pm-cis-3-Et Fentanyl 6.2cis	ip	$0.0068^{\text {C }}$ (0.0026-0.018)	1.49
7	(\pm-trans-3-Et Fentanyl 6.2trans	ip	$0.0116^{\text {C }}$ (0.011-0.012)	0.9
8	(\pm)-cis-3-allyl Fentanyl	iv	$0.08^{\text {B,D,ref } 11}$	0.138
9	(\pm)-cis-3-Pr Fentanyl	iv	$0.02^{\text {B,D,ref } 11}$	0.55
10	(\pm)-trans-3-Pr Fentanyl	iv	$0.04{ }^{\text {B,D,ref } 11}$	0.275
11	(\pm)-cis-3-i-Pr Fentanyl 6.3cis	ip	no activity in doses up to $5 \mathrm{mg} / \mathrm{kg}^{\text {C }}$	-
12	(\pm)-cis-3-Bu Fentanyl 6.4cis	ip	$0.162^{\text {C }}$ (0.082-0.320)	0.064
13	(\pm)-trans-3-Bu Fentanyl 6.4trans	ip	$0.348^{\text {C }}$ (0.181-0.669)	0.03
14	(\pm)-cis-3-Bn Fentanyl 6.5cis	ip	$1.31{ }^{\text {C }}$ (0.70-2.46)	0.0079
15	(\pm)-trans-3-Bn Fentanyl 6.5trans	ip	$1.91{ }^{\text {C }}$ (0.39-9.4)	0.0054
16	(\pm)-cis-3-Phen Fentanyl 6.6cis	ip	no activity in doses up to $5 \mathrm{mg} / \mathrm{kg}^{\text {C }}$	-
17	Morphine	iv	$3.14{ }^{\text {B,D,ref 10b }}$	286

${ }^{A} E D_{50}$ values refer to the free bases of the tested compounds and are expressed in mg per kg of body weight; ${ }^{B}$ Values reported in the literature; ${ }^{\text {C }}$ Results obtained in our laboratories; ${ }^{\text {D }}$ Confidence limits not reported

EXPERIMENTAL

IR spectra were recorded on a Perkin-Elmer FT IR 1725 X instrument, at $4 \mathrm{~cm}^{-1}$ resolution. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR were recorded on a Varian Gemini spectrometer, at 200 MHz and 50 MHz , respectively, using CDCl_{3} as the solvent and TMS as the internal standard. (In some ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra multiplet signals were insufficiently resolved for precise integration and the number of the corresponding hydrogens could not be determined. In those instances, only approximate multiplet intervals are reported). Coupling constants are given in Hz. Mass spectra were recorded on a Finnigan-Math instrument, model 8230 , employing both the electron impact (70 eV) and chemical ionisation (with i-butane) technique. Gas chromatograms were obtained using a Varian 3400 instrument, on a nonpolar DB-5 column. MeOH, $i-\mathrm{PrOH}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{EtOAc}, \mathrm{PhMe}$, hexane
and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were of p.a. grade and purified further according to standard procedures. Absolute THF and $\mathrm{Et}_{2} \mathrm{O}$ were prepared by distillation from benzophenone/sodium. Reagents were of p.a. grade and used as supplied (Aldrich Chemical Co., Merck Darmstadt Chemical Co. and Fluka Chemical Co.). Neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$, activity II-III, Merck, Darmstadt was used for column chromatography while thin layer plates were coated with neutral $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{HF}_{254}$, Merck, Darmstadt.

1. N-[1-(2-Phenylethyl)piperidine-4-ylidene]cyclohexanamine (2)

An apparatus equipped with a Dean and Stark adapter was purged with argon and charged with piperidone $\mathbf{1}(10.0 \mathrm{~g}, 49 \mathrm{mmol})$, cyclohexylamine ($13.8 \mathrm{~mL}, 120 \mathrm{mmol}$), $p-\mathrm{TsOH}_{2} \mathrm{O}(100 \mathrm{mg})$ and PhMe $(100 \mathrm{~mL})$. The mixture was stirred magnetically and heated under reflux, with continuous water separation, for 2 h , then cooled to $\approx 20^{\circ} \mathrm{C}$ under Ar and concentrated on a rotatory evaporator. The residual imine, dark viscous oil, is vacuum distilled (b.p. $165-170{ }^{\circ} \mathrm{C} 0.1$ torr). Yield: 13.52 g , $\approx 97 \%$ (pale yellow viscous liquid). $\mathbf{2}$ hydrolyzes readily and is best kept under an Ar atmosphere. $I R\left(\mathrm{~cm}^{-1}\right)$: 1665 (characteristic imine band).

2. 3-Benzyl-1-phenethyl-piperidin-4-one (3.5)

A typical procedure for the preparation of 3-alkyl piperidones 3.1-3.6 is illustrated on piperidone $\mathbf{3 . 5}$. The method is directly applicable to all other 3-alkyl piperidones.

A three necked flask, equipped with a pressure equalizing dropping funnel, thermometer and a reflux condenser capped with a mineral oil bubbler was purged with Ar and charged with imine $\mathbf{2}$ dissolved in THF $(5.0 \mathrm{~g}, 17.6 \mathrm{mmol} / 40 \mathrm{~mL}$ THF). Butyllithium (2.0 M in cyclohexane, $\approx 9.0 \mathrm{~mL} ; 18.0 \mathrm{mmol}$) was injected into the dropping funnel and added dropwise, over 10 min , to the cooled $\left(\approx 0^{\circ} \mathrm{C}\right)$ and stirred mixture. An intense yellow-orange coloration of the imine anion developed immediately. After additional stirring ($15 \mathrm{~min}, \approx 0$ ${ }^{\circ} \mathrm{C}$), benzyl chloride ($2.3 \mathrm{~mL} ; 20 \mathrm{mmol} / 5 \mathrm{~mL}$ THF) was injected into the dropping funnel and then added dropwise ($\approx 10 \mathrm{~min}, 0-5^{\circ} \mathrm{C}$) to the reaction mixture. The reaction was mildly exothermic, LiCl precipitated and the yellow-orange coloration disappeared. The mixture was stirred for $1 \mathrm{~h}\left(\approx 20^{\circ} \mathrm{C}\right)$, then poured into aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~g} / 50 \mathrm{~mL}$ water $)$ and stirred for 30 min . The resulting emulsion was concentrated using a rotatory evaporator $\left(\approx 50-60^{\circ} \mathrm{C}\right)$. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, the combined extracts dried (anh. $\mathrm{K}_{2} \mathrm{CO}_{3}$) and concentrated. Piperidone 3.5 was obtained as a yellow viscous oil. Yield: $4.80 \mathrm{~g} ; 93 \%$. Purity (cap. GC): $\approx 96 \%$. Contamination with starting piperidone $1: \approx 1-2 \%$. The compound may be additionally purified on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column (30 g of alumina per 1 g of the substance) using hexane/EtOAc gradient (99:1, 98:2, etc.). IR/(cm^{-1}): 3422, 3082, 3058, 3024, 2965, 2950, 2928, 2904, 2858, $1709,1667,1600,1495,1476,1453,1424,1376,1362,1335,1279,1250,1219,1166,1139,1080,1050$, 1029, 996, 889, 770, 749, 738, 723, 700; ${ }^{1} H-N M R(\delta): ~ 2.29-2.49(m, 3 H), ~ 2.73-2.82(m, 1 H), ~ 2.91-2.98(m$, $2 \mathrm{H}), 3.22(d, J=13.6,1 \mathrm{H}), 3.40(d, J=12.0,1 \mathrm{H}), 3.58-3.64(m, 5 \mathrm{H}), 7.21-7.31\left(m, 10 \mathrm{H}_{\mathrm{Ar}}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR} /(\mathrm{ppm}): 32.01,32.63,39.54,49.88,52.23,56.98,57.71,124.88,124.94,127.13,127.17,127.38$, 127.71, 138.18, 138.66, 208.74. MS (C.I.): 294 (M+1, 100).

The same procedure was used to prepare all the other piperidones $\mathbf{3}$. The products were not purified by chromatography.

3. (\pm-3-Methyl-1-phenethyl-piperidin-4-one (3.1).

From imine 2 ($5.69 \mathrm{~g}, 20 \mathrm{mmol}$); Alkyl halide: MeI; Yield: 3.56 g ; 82 \%; Purity (cap. GC): 96%. $I R\left(\mathrm{~cm}^{-1}\right): 3085,3062,3027,2964,2932,2806,1716,1603,1496,1472,1455,1418,1378,1358,1329,1220$, 1187, 1139, 884, 751, 700; ${ }^{l} H-N M R(\delta): 1.01\left(d, J=6.8, \mathrm{CH}_{3}\right), 2.14(t, J=11.6,1 \mathrm{H}), 2.30-2.49(m, 2 \mathrm{H})$, 2.53-2.73 ($m, 4 \mathrm{H}$), 2.77-2.88 ($\mathrm{m}, 2 \mathrm{H}$), 3.12-3.22 ($\mathrm{m}, 2 \mathrm{H}$), 7.15-7.37 ($m, 5 \mathrm{H}_{\mathrm{Ar}}$); ${ }^{13} C-N M R(\mathrm{ppm})$: 11.71, $33.87,40.64,44.00,53.64,58.90,60.69,125.97,128.25,128.49,139.83,210.56$.

4. (土)-3-Ethyl-1-phenethyl-piperidin-4-one (3.2).

From imine 2 ($5.69 \mathrm{~g}, 20 \mathrm{mmol}$); Alkyl halide: Etf; Yield: $3.93 \mathrm{~g} ; 85 \%$; Purity (cap. GC): $95 \% . \operatorname{IR}\left(\mathrm{cm}^{-1}\right)$: $3085,3063,3027,2952,2934,1717,1604,1501,1468,1451,1422,1362,1333,1219,1177,1135,1079,1034$, 887, 750, 698; ${ }^{1} H-N M R(\delta): 0.89\left(t, J=6.8, \mathrm{CH}_{3}\right), 1.23-1.33(m, 1 \mathrm{H}), 1.74-1.90(m, 1 \mathrm{H}), 2.19(t, J=10.8,1 \mathrm{H})$, 2.37-2.51 ($m, 4 \mathrm{H}$), 2.67-2.76 ($m, 2 \mathrm{H}$), 2.80-3.14 ($\mathrm{m}, 2 \mathrm{H}$), 3.09-3.15 ($m, 2 \mathrm{H}$), 7.17-7.34 ($\mathrm{m}, 5 \mathrm{H}_{\mathrm{Ar}}$); ${ }^{13} C-N M R(\mathrm{ppm}): 11.18,21.1,33.89,39.33,51.11,54.61,61.35,125.89,128.01,128.59,139.87,210.93$.

5. (土)-3-i-Propyl-1-phenethyl-piperidin-4-one (3.3).

From imine 2 ($5.69 \mathrm{~g}, 20 \mathrm{mmol}$); Alkyl halide: i-PrI; Yield: 3.88 g ; 79%; Purity (cap. GC): 95%. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3082,3062,3022,2965,2930,1718,1600,1502,1479,1455,1418,1378,1371,1358,1325,1220$, 1187, 1133, 747, 698; ${ }^{1} H-N M R(\delta): ~ 0.91\left(d d, J_{1}=1.8, J_{2}=6.8,2 \mathrm{CH}_{3}\right), 1.55-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.26(m$, $2 \mathrm{H}), 2.46(t, J=6.2,2 \mathrm{H}), 2.57-2.75(m, 3 \mathrm{H}), 2.81-2.96(m, 4 \mathrm{H}), 7.15-7.38\left(m, 5 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm})$: 19.16, 20.67, 25.64, 33.90, 40.71, 53.66, 55.26, 56.17, 59.19, 125.94, 128.21, 128.47, 139.88, 210.71.

6. (土)-3-Butyl-1-phenethyl-piperidin-4-one (3.4).

From imine 2 (5.69 g, 20 mmol); Alkyl halide: BuBr; Yield 3.23 g ; 83 \%; Purity (cap. GC): 97 \%. $I R /\left(\mathrm{cm}^{-1}\right): 3086,3063,3027,2955,2931,2860,1717,1603,1497,1468,1455,1417,1358,1330,1224,1182$, $1138,1080,1031,887,751,700{ }^{1} H-N M R(\delta): 0.89\left(t, J=7.0, \mathrm{CH}_{3}\right), 1.21-1.36(m, 5 \mathrm{H}), 1.71-1.92(m, 1 \mathrm{H})$, $2.24(t, J=10.8,1 \mathrm{H}), 2.35-2.57(m, 4 \mathrm{H}), 2.65-2.80(m, 2 \mathrm{H}), 2.82-3.10(m, 2 \mathrm{H}), 3.13-3.17(m, 2 \mathrm{H})$, $7.17-7.34\left(m, 5 \mathrm{H}_{\mathrm{Ar}}\right):{ }^{13} \mathrm{C}-\mathrm{NM} /(\mathrm{ppm}): 13.86,22.67,26.88,29.21,34.00,40.82,49.58,53.73,58.94,59.16$, 126.08, 128.36, 128.62, 139.98, 210.85.

7. (\pm)-1,3-Diphenethyl-piperidin-4-one (3.6).

From imine 2: 5.69 g, 20 mmol ; Alkyl halide: PhenBr; Yield 3.92 g; 85%; Purity (cap. GC): 94%. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3080,3058,3021,2960,2952,2930,2858,1711,1598,1497,1473,1450,1375,1362,1329,1277$, $1257,1220,1165,1145,1084,1044,1034,999,890,771,751,740,720,701,{ }^{1} H-N M R(\delta): 2.13-2.42(m$, $5 \mathrm{H}) ; 2.66-2.78(m, 1 \mathrm{H}) ; 2.84-2.95(m, 2 \mathrm{H}) ; 3.31(d, J=12.5,1 \mathrm{H}) ; 3.49(d, J=12.9 ; 1 \mathrm{H}) ; 3.61-3.68(m, 5 \mathrm{H})$; 7.22-7.32 (m, $\left.10 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm}): 32.21 ; 31.93 ; 33.02 ; 40.12 ; 51.08 ; 53.23 ; 56.14 ; 58.25 ; 124.69$; 125.04; 127.11; 127.10; 127.79; 138.22; 138.97; 209.01.

8. 3-Butyl-1-phenethyl-N-phenylpiperidin-4-amine (5.4).

Typical procedure for the preparation of 3-alkyl-4-anilinopiperidines $\mathbf{5 . 1} \mathbf{- 5 . 6}$, is illustrated on 3-bu-tyl-4-anilinopiperidine (5.4). The method is directly applicable to all the other anilinopiperidines 5.1-5.6.

A single necked flask equipped with a Dean and Stark adapter was purged with Ar and charged with piperidone 3.4 ($3.0 \mathrm{~g}, 0.0116 \mathrm{~mol}$), aniline (2.15 g , 2 eq .), anh. $\mathrm{ZnCl}_{2}(0.16 \mathrm{~g}, 0.1 \mathrm{eq}$.$) and xylene (100 \mathrm{~mL}$). The mixture was stirred and refluxed for 36 h , under Ar , with azeotropic water separation, then cooled to ≈ 20 ${ }^{\circ} \mathrm{C}$ and filtered under Ar. The filtrate was concentrated on a rotatory evaporator, using a moisture absorbing filter with 4A sieves, to prevent imine hydrolysis. The crude imine 4.4 was obtained as a dark-colored oil, containing residual aniline which was used directly in the next step. $I R\left(\mathrm{~cm}^{-1}\right): 1660$ (band characteristic of the imine group). A two necked flask equipped with a pressure-equalizing dropping funnel and a reflux condenser capped with a mineral oil bubbler (with gas inlet) was purged with Ar and charged with abs. THF (50 $\mathrm{mL})$ and $\mathrm{LiAlH}_{4}(0.44 \mathrm{~g}, 4 \mathrm{eq}$.). The mixture was stirred and heated to reflux, then imine 4.4 in $\mathrm{THF}(10 \mathrm{~mL})$ was added dropwise, over $10 \mathrm{~min}\left(\mathrm{H}_{2}\right.$ evolution). After 10 h (the Ar atmosphere was maintained), the mixture was cooled to $\approx 20^{\circ} \mathrm{C}$, EtOAc ($5 \mathrm{~mL}, 5$ eq.) was added dropwise $\left(\mathrm{H}_{2}\right.$ evolution), followed by $10 \% \mathrm{HCl}(30$ mL). The mixture was concentrated using a rotatory evaporator, the residue alkalized with $10 \% \mathrm{NaOH}$ to pH >12, extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \times 50 \mathrm{~mL}\right)$, the combined extracts dried ($\mathrm{anh} . \mathrm{K}_{2} \mathrm{CO}_{3}$) and concentrated. The excess aniline was removed under reduced pressure $\left(0.5 \mathrm{~mm} \mathrm{Hg}, 50^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)$ and the residue chromatographed on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column (120 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$) using hexane: EtOAc gradient: $99 / 1,98 / 2$, etc. The less polar cis isomer 5.4cis eluted first followed by the trans isomer 5.4trans.
8.1. (\pm)-5.4cis. Yield: $1.65 \mathrm{~g}, 42 \%$ (pale yellow viscous oil). Purity (cap. GC) $=98 \% . I R\left(\mathrm{~cm}^{-1}\right): 3410$, $3085,3055,3026,2952,2929,2858,2803,2767,1601,1503,1467,1455,1434,1376,1317,1255,1205$, $1180,1156,1128,1104,1076,1030,995,749,696 ;{ }^{l} H-N M R(\delta): 0.85\left(t, J=6.6, \mathrm{CH}_{3}\right), 1.23-1.30(m, 3$ $\left.\mathrm{CH}_{2}\right), 1.71-1.78(m, 1 \mathrm{H}), 1.87-2.07(m, 2 \mathrm{H}), 2.29-2.49(m, 2 \mathrm{H}), 2.53-2.61(m, 4 \mathrm{H}), 2.82(t, J=8.5,2 \mathrm{H}), 3.61$ $(q, J=4.8,1 \mathrm{H}), 3.43-3.90(m, 1 \mathrm{H}), 6.61\left(d, J=8.0,2 \mathrm{H}_{\mathrm{Ar}}\right), 6.70\left(t, J=7.0,1 \mathrm{H}_{\mathrm{Ar}}\right), 7.12-7.34\left(m, 7 \mathrm{H}_{\mathrm{Ar}}\right)$; ${ }^{13} C$-NMR(ppm): $14.01,23.03,28.99,31.32,34.17,34.66,43.51,52.32,53.53,59.11,60.34,112.81,116.52$, $125.69,128,06,128.40,129.12,140.16,147.72, M S(C . I)$) $245(\mathrm{M}-91.8), 337(\mathrm{M}+1,100), 393(\mathrm{M}+57,12)$.
8.2. (\pm)-5.4trans. Yield: $1.00 \mathrm{~g}, 26 \%$ (pale yellow viscous oil). Purity (cap. GC$)=98 \% . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3376$, $3085,3055,3026,2952,2929,2858,1602,1501,1467,1455,1376,1320,1270,1181,1153,1132,1111,1037$, $1030,992,959,868,748,696,{ }^{1} H-N M R(\delta): 0.87\left(t, J=6.6, \mathrm{CH}_{3}\right), 1.10-1.44\left(m, 3 \mathrm{CH}_{2}\right), 1.49-1.59(m, 1 \mathrm{H})$, $1.71-1.79(m, 1 \mathrm{H}), 1.87(m, 1 \mathrm{H}), 2.05-2.21(m, 2 \mathrm{H}), 2.57-2.66(m, 2 \mathrm{H}), 2.84(t, J=6.2,2 \mathrm{H}), 2.93-3.15(m, 3 \mathrm{H})$, $3.42-3.80(m, 1 \mathrm{H}), 6.58\left(d, J=8.0,2 \mathrm{H}_{\mathrm{Ar}}\right), 6.67\left(t, J=7.0,1 \mathrm{H}_{\mathrm{Ar}}\right), 7.10-7.34\left(m, 7 \mathrm{H}_{\mathrm{Ar}}\right) .{ }^{13} C-N M R(\mathrm{ppm}): 13.91$,
$22.83,29.08,30.20,32.27,33.66,42.30,52.49,54.71,58.30,60.43,112.76,116.60,125.79,128.16,128.48$, 129.07, 140.21, 147.66; (MS (C.I.): 245 (M-91, 10), 337 ($\mathrm{M}+1,100$), 393 ($\mathrm{M}+57,10$).

9. 3-Methyl-1-phenethyl-N-phenylpiperidin-4-amine (5.1).

From piperidone 3.1 ($4.0 \mathrm{~g}, 0.0184 \mathrm{~mol})$.
9.1. (\pm)-5.1cis. Yield: $2.77 \mathrm{~g}, 51 \%$ (pale yellow viscous oil). Purity (cap. GC) $=98 \% . I R /\left(\mathrm{cm}^{-1}\right): 3395$, 3085, 3056, 3025, 2947, 1602, 1505, 1467, 1455, 1436, 1373, 1354, 1322, 1271, 1179, 1126, 1108, 1092, 1070, 1030, 992, 977, 867, 695; ${ }^{1} H-N M R(\delta): 0.99\left(d, J=7.0, \mathrm{CH}_{3}\right), 1.80\left(q u i n t, J=4.6, \mathrm{CH}_{2}\right), 2.12-2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.48-2.68(m, 6 \mathrm{H}), 2.81(t, J=8.4,2 \mathrm{H}) 3.52-3.55(m, 2 \mathrm{H}), 6.59-6.71\left(m, 3 \mathrm{H}_{\mathrm{Ar}}\right), 7.13-7.33\left(m, 7 \mathrm{H}_{\mathrm{Ar}}\right)$.
${ }^{13} C-N M R(p p m): ~ 11.57,29.00,33.65,40.26,49.28,50.10,54.39,60.64,112.93,116.74,125.85,128.22$, 128.56, 129.18, 140.35, 147.17; MS (C.I.): 203 (M-91, 10), 295 (M+1, 100).
9.2. (\pm)-5.1trans. Yield: $1.13 \mathrm{~g}, 21 \%$ (pale yellow viscous oil). Purity (cap. GC) $=98 \% . I R\left(\mathrm{~cm}^{-1}\right)$: $3395,3085,3055,3025,2947,1602,1505,1466,1455,1437,1371,1354,1322,1272,1181,1126,1107$, $1090,1070,1030,990,977,869,695 ;{ }^{1} H-N M R(\delta): 1.01\left(d, J=6.6, \mathrm{CH}_{3}\right), 1.37-1.50(m, 1 \mathrm{H}), 1.58-1.76(m$, $1 \mathrm{H}), 1.86(t, J=10.8,1 \mathrm{H}), 2.03-2.21(m, 2 \mathrm{H}), 2.57\left(d d, J_{1}=1.6, J_{2}=7.0,1 \mathrm{H}\right), 2.62(d, J=4.6,1 \mathrm{H})$, $2.78-2.92(m, 3 H), 2.98-3.06(m, 2 H), 3.18-3.38(m, 1 H), 6.56-6.69\left(m, 3 \mathrm{H}_{\mathrm{Ar}}\right), 7.12-7.33\left(m, 7 \mathrm{H}_{\mathrm{Ar}}\right)$; ${ }^{13} C-N M R(\mathrm{ppm}): 16.62,32.59,33.77,37.84,53.00,56.52,60.41,60.91,112.86,116.74,125.93,128.29$, 128.60, 129.20, 140.31, 147.82; MS (C.I.); 203 (M-91, 10) 295 (M+1, 100), 351 (M+57, 10).
10. 3-Ethyl-1-phenethyl- N -phenylpiperidin-4-amine (5.2).

From piperidone $3.2(2.0 \mathrm{~g}, 0.00864 \mathrm{~mol})$.
10.1. (\pm)-5.2cis. Yield: $1.02 \mathrm{~g}, 38 \%$ (pale yellow viscous oil). Purity (cap. GC) $=98 \% . I R\left(\mathrm{~cm}^{-1}\right): 3418$, 3084, 3053, 3025, 2956, 2874, 2803, 2768, 1601, 1504, 1467, 1455, 1433, 1373, 1316, 1253, 1180, 1124, 1100, 1075, 1046, 1030, 992, 748, 695, 506; ${ }^{1} H-N M R(\delta): 0.89\left(t, \mathrm{CH}_{3}, J=7.4\right), 1.39$ (quint, $\mathrm{CH}_{2}, J=7.4$), $1.62-1.75(m, 1 H), 1.86-1.91(m, 2 H), 2.21-2.48(m, 3 H), 2.54-2.64(m, 3 H), 2.82(t, J=7.8,2 H), 3.57-3.70$ $(m, 2 \mathrm{H}), 6.59-6.70\left(m, 3 \mathrm{H}_{\mathrm{Ar}}\right), 7.09-7.38\left(m, 7 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm}): 11.57,21.25,29.00,33.65,40.26$, $49.28,50.10,54.39,60.64,112.93,116.74,125.85,128.22,128.56,129.18,140.35,147.17$; $M S$ (C.I.): 217 (M-91, 15), $309(\mathrm{M}+1,100), 365(\mathrm{M}+57,10)$.
10.2. (\pm)-5.2trans. Yield: $0.71 \mathrm{~g}, 27 \%$ (pale yellow viscous oil). Purity (cap. GC) $=98 \% . I R\left(\mathrm{~cm}^{-1}\right)$: $3397,3085,3054,3025,2958,2936,2875,2804,2767,1602,1505,1466,1455,1435,1376,1320,1276$, $1181,1154,1131,1110,1072,1030,748,695{ }^{1} H-N M R(\delta): 0.89\left(t, \mathrm{CH}_{3}, J=7.4\right), 1.11-1.25(m, 1 \mathrm{H})$, $1.36-1.49(m, 2 H), 1.73-1.88(m, 2 \mathrm{H}), 1.99-2.16(m, 2 \mathrm{H}), 2.53-2.63(m, 2 \mathrm{H}), 2.77-2.84(m, 2 \mathrm{H}), 2.91-3.11$ $(m, 3 \mathrm{H}), 6.52-6.67\left(m, 3 \mathrm{H}_{\mathrm{Ar}}\right), 7.10-7.32\left(m, 7 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm}): 11.22,23.13,32.30,33.61,43.86$, $52.55,54.33,57.79,60.49,112.67,116.56,125.87,128.21,128.52,129.12,140.18,147.68 ;$ MS (C.I.): 217 (M-91, 15), 309 ($\mathrm{M}+1,100$), 365 ($\mathrm{M}+57,10$).
11. 3-i-Propyl-1-phenethyl-N-phenylpiperidin-4-amine (5.3).

From piperidone 3.3 ($3.0 \mathrm{~g}, 0.0122 \mathrm{~mol}$).
11.1. (\pm)-5.3cis. Yield: $1.13 \mathrm{~g}, 29 \%$ (pale yellow viscous oil). Purity (cap. GC) $=98 \% . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3425$, $3053,3025,2953,2870,1601,1505,1469,1455,1430,1383,1365,1350,1314,1249,1214,1179,1147$, 1104, 1085, 1030, 1011, 747, 693; ${ }^{l} H-N M R(\delta): ~ 0.89\left(d, J=6.0, \mathrm{CH}_{3}\right), 0.95\left(d, J=6.2, \mathrm{CH}_{3}\right), 1.53-1.73(\mathrm{~m}$, $3 \mathrm{H}), 1.94\left(q d, J_{q}=11.4, J_{d}=2.2,2 \mathrm{H}\right), 2.17\left(t d, J_{d}=2.4, J_{t}=12.8,1 \mathrm{H}\right), 2.56-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.88(\mathrm{~m}, 3 \mathrm{H})$, 2.98-3.06 ($m, 1 \mathrm{H}$), 3.80 (broad. $s, 2 \mathrm{H}), 6.58-6.70\left(m, 3 \mathrm{H}_{\mathrm{Ar}}\right), 7.12-7.33\left(m, 7 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm}): 20.34$, 20.94, 27.33, 29.10, 33.67, 46.21, 46.30, 47.87, 52.89, 61.03, 112.78, 116.76, 126.03.
11.2. (\pm)-5.3trans. Yield: $0.92 \mathrm{~g}, 23 \%$ (pale yellow viscous oil). Purity (cap. GC): $98 \% . I R /\left(\mathrm{cm}^{-1}\right): 3392$, $3053,3025,2955,2871,1602,1505,1466,1454,1434,1369,1353,1318,1283,1233,1181,1154,1137,1123$, 1071, 1031, 992, 749, 699; ${ }^{1} H-N M R(\delta): ~ 0.84\left(d, J=7.0, \mathrm{CH}_{3}\right), 0.98\left(d, J=7.0, \mathrm{CH}_{3}\right), 1.36-1.59(m, 2 \mathrm{H}), 1.93$ (d, $J=11.2,1 \mathrm{H}), 2.04(d, J=10.4,1 \mathrm{H}), 2.14-2.23(m, 2 \mathrm{H}), 2.56-2.63(m, 2 \mathrm{H}), 2.79-2.87(m, 2 \mathrm{H}), 2.93-3.00(m, 2 \mathrm{H})$, $3.28(b r . s, 2 \mathrm{H}), 6.57-6.69\left(m, 3 \mathrm{H}_{\mathrm{Ar}}\right), 7.12-7.34\left(m, 7 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm}): 17.17,20.94,25.86,32.54,33.85$, $47.30,51.80,52.75,53.35,60.89,112.85,116.80,126.05,128.40,128.69,129.36,140.36,147.64$.

12. 3-Benzyl-1-phenethyl-N-phenylpiperidin-4-amine (5.5).

From piperidone 3.5 ($2.0 \mathrm{~g}, 0.00681 \mathrm{~mol}$).
12.1. (\pm)-5.5cis. Yield: $1.02 \mathrm{~g}, 40 \%$ (pale yellow viscous oil). Purity (cap. GC): $98 \% . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3401$,
$3084,3059,3025,2942,2859,2802,2767,1602,1504,1468,1454,1434,1372,1314,1288,1255,1179$, 1154, 1120, 1071, 1030, 1004, 983, 910, 699, 506; ${ }^{1} H-N M R(\delta): 1.73-1.88(m, 3 H), 2.28-2.82(m, 10 \mathrm{H})$, 3.45-3.60 ($m, 1 \mathrm{H}$), $3.67(\mathrm{br} . s, 1 \mathrm{H}), 6.58-6.74\left(m, 3 \mathrm{H}_{\mathrm{Ar}}\right), 7.00-7.34\left(m, 12 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm}): 28.72$, $33.54,40.49,50.47,50.68,53.22,54.20,60.26,113.29,117.00,125.58,125.78,128.01,128.12,128.53$, 129.03, 129.12, 140.36, 140.55, 146.80; MS (C.I.): 280 (M-90, 25), 371 ($\mathrm{M}+1,100$), 427 (M+57, 20).
12.2. (\pm)-5.5trans. Yield: $0.52 \mathrm{~g}, 0.21$ \% (pale yellow viscous oil). Purity (cap. GC): $98 \% . \operatorname{IR}\left(\mathrm{cm}^{-1}\right)$: $3402,3084,3058,3025,2942,2858,2804,2766,1601,1505,1497,1468,1454,1435,1375,1319,1270$, $1218,1181,1154,1118,1072,1031,748,699 ;{ }^{1} H-N M R(\delta): 1.44\left(q t, J_{\mathrm{t}}=1.6, J_{\mathrm{q}}=11.6,1 \mathrm{H}\right), 1.84-1.92(m$, $2 \mathrm{H}), 2.13\left(q d, J_{\mathrm{d}}=2.6, J_{\mathrm{q}}=11.2,2 \mathrm{H}\right), 2.40-2.58(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.77(m, 2 \mathrm{H}), 2.85-2.97(m, 2 \mathrm{H}), 3.11\left(d d, J_{\mathrm{d} 1}\right.$ $\left.=3, J_{\mathrm{d} 2}=13.4,2 \mathrm{H}\right), 3.35-3.55(\mathrm{br} . s, 1 \mathrm{H}), 6.58\left(d, J=8.6,2 \mathrm{H}_{\mathrm{Ar}}\right), 6.68\left(t, J=8.2,1 \mathrm{H}_{\mathrm{Ar}}\right), 7.08-7.38(m$, $12 \mathrm{H}_{\mathrm{Ar}}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm}): 32.10,33.64,37.29,43.88,52.30,54.40,57.83,60.30,113.00,116.95,125.83$, 125.86, 128.16, 128.21, 128.54, 129.04, 129.22, 140.00, 140.24, 147.47; MS (C.I.): 279 (M-91, 30), 371 (M+1, 100), 428 (M+58, 20)

13. 1,3-Diphenethyl-N-phenylpiperidin-4-amine (5.6).

From piperidone 3.6 ($2.0 \mathrm{~g}, 0.0065 \mathrm{~mol}$).
$13.1(\pm)$ - $\mathbf{5 . 6 c i s}$. Yield: $0.78 \mathrm{~g}(31 \%)$ (pale yellow viscous oil). Purity (cap. GC): 98%. $I R\left(\mathrm{~cm}^{-1}\right): 3402$, 3084, 3058, 3025, 2945, 2858, 2804, 1604, 1514, 1501, 1465, 1442, 1381, 1330, 1277, 1220, 1182, 1150, 1122, 1062, 1030, 755, 700; ${ }^{l} H-N M R(\delta): 1.33-1.69(m), 1.86-1.97(m), 2.05-2.18(m), 2.35(s, N H), 2.54-2.63(m)$, 2.65-2.73 (m), 2.78-2.82 $(m), 2.98-3.31(m), 6.51-6.68\left(m, 2 \mathrm{H}_{\mathrm{Ar}}\right), 7.05-7.18\left(m, 13 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm})$: $28.73,33.18,33.41,37.74,49.67,50.14,54.49,60.22,113.01,116.84,125.50,125.81,128.07,128.11,128.15$, 128.47, 129.11, 140.09, 142.00, 147.01; MS (C.I.): 441 (M+57, 10 \%), 385 (M+1, 100 \%).
$13.2(\pm)-5.6$ trans. Yield: $0.48 \mathrm{~g}(19 \%)$ (pale yellow viscous oil). Purity (cap. GC): $98 \% . I R\left(\mathrm{~cm}^{-1}\right): 3402$, $3084,3058,3025,2945,2858,2804,1605,1514,1501,1464,1440,1382,1331,1277,1220,1177,1150,1120$, 1062, 1029, 748, 702; ${ }^{1} H-N M R(\delta): ~ 1.45-1.63(m), 1.84-1.97(m), 2.01-2.21(m), 2.40(s, N H), 2.55-2.64(m)$, 2.65-2.73 (m), 2.78-2.82 (m), 3.00-3.31 (m), 6.51-6.68 (m, 2H $\left.\mathrm{Ar}_{\mathrm{r}}\right), 7.05-7.18\left(m, 13 \mathrm{H}_{\mathrm{Ar}}\right):{ }^{13} C-N M R(\mathrm{ppm})$: $29.05,33.38,33.49,37.61,49.70,50.11,54.55,60.27,113.09,116.88,125.48,125.83,128.06,128.14,128.19$, 128.52, 129.06, 140.12, 142.08, 147.04; MS (C.I.): 441 (M+57, 14%), 385 (M+1, 100 \%).

14. A typical procedure for the preparation of the 3-alkyl-4-anilidopiperidines 6.1-6.6.

This procedure is illustrated on compound $(\pm)-\mathbf{6 . 1}$ cis and it is directly applicable to all the other anilidopiperidines $6.1-6.6$. All the yields and the m.p.(dec.) values refer to the monooxalate salts. All the spectral data refer to the free bases.
14.1. (\pm)-cis-N-(3-Methyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.1cis). A three necked flask, equipped with a pressure-equalizing dropping funnel, reflux condenser capped with a mineral oil bubbler and a thermometer was flushed with Ar and charged with anilinopiperidine 5.1 cis (1.47 g ; 5 mmol), $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{~mL} ; 2.5 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The mixture was cooled $\left(-5-0^{\circ} \mathrm{C}\right)$, propionyl chloride (0.9 $\mathrm{mL} ; 10 \mathrm{mmol} / 5 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$) added dropwise over 5 min at $0-5^{\circ} \mathrm{C}$ and the stirring continued for 4 h at $20^{\circ} \mathrm{C}$. The hydrochloride salts form a voluminous precipitate. Upon addition of $\mathrm{MeOH}(5 \mathrm{~mL})$, the precipitate dissolved, the mixture was stirred for 10 min and then poured into aqueous $\mathrm{K}_{2} \mathrm{CO}_{3},\left(5 \mathrm{~g} / 50 \mathrm{mLH}_{2} \mathrm{O}\right)$. The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$ and the combined organic layers were dried (anh. $\mathrm{K}_{2} \mathrm{CO}_{3}$) and concentrated (rotatory evaporator). The residual oil was dissolved in dry $i-\mathrm{PrOH}(5 \mathrm{~mL})$, added to anh. oxalic acid solution $(0.55 \mathrm{~g} ; 6.1 \mathrm{mmol} / 5 \mathrm{~mL} i-\mathrm{PrOH})$ and the mixture is left to crystallize at $-20^{\circ} \mathrm{C}(12 \mathrm{~h})$. The crystallized salt was filtered off, washed with ether and dried under vacuum $\left(40^{\circ} \mathrm{C}, 2 \mathrm{~h}, 0.1\right.$ Torr). Yield: $2.07 \mathrm{~g}(94 \%)$; m.p. (dec.): $162-163^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.{ }^{9 \mathrm{~b}} 163-164{ }^{\circ} \mathrm{C}\right)$. The purity of the free base (liberated from the oxalate salt), cap. $\mathrm{GC}>99 \%$; pale yellow viscous oil.

Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3455,3061,3027,2938,2804,2773,1658,1594,1494,1455,1374,1273,1246,1158$, 1122, 1093, 1074, 1050, 1030, 1008, 985, 750, 701; ${ }^{l} H-N M R(\delta): 1.10\left(t, J=7.6, \mathrm{CH}_{3}\right), 1.11\left(d, J=7.0, \mathrm{CH}_{3}\right)$, $1.21-1.31(m, 1 H), 1.44\left(t d, J_{\mathrm{d}}=4.2, J_{\mathrm{t}}=12.2,1 \mathrm{H}\right), 1.94\left(q, J=7.2, \mathrm{CH}_{2}\right), 2.06\left(d d, J_{1}=3.2, J_{2}=11.6,1 \mathrm{H}\right), 2.28$ $(d, J=9.0,1 \mathrm{H}), 2.40-2.58(m, 2 \mathrm{H}), 2.66-2.82(m, 5 \mathrm{H}), 4.41\left(d t, J_{\mathrm{t}}=4.4, J_{\mathrm{d}}=12.6, \mathrm{C}_{4}-\mathrm{H}\right), 7.05-7.35\left(m, 10 \mathrm{H}_{\mathrm{Ar}}\right)$; ${ }^{13} C$-NMR (ppm): 9.56, 13.88, 26.33, 28.93, 31.21, 33.61, 54.10, 57.46, 59.36, 60.25, 125.79, 127.89, 128.18, $128.67,128.83,129.00,130.33,130.69,140.60,174.33$; $M S$ (C.I.): 259 (M-91, 45), 351 ($\mathrm{M}+1,100$).
14.2. (\pm)-trans-N-(3-Methyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.1trans).

From (\pm)-5.1trans $(1.0 \mathrm{~g}, 0.0034 \mathrm{~mol})$; Yield: $=1.47 \mathrm{~g}, 98 \%$; m.p. (dec.): $157-158^{\circ} \mathrm{C}\left(\right.$ Lit. $^{9 \mathrm{~b}} 159-160$ ${ }^{\circ} \mathrm{C}$). Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3061,3025,2940,2801,1658,1594,1495,1455,1372,1279,1241,1160,1093$, $1070,1053,1030,1014,985,751,702 ;{ }^{1} H-N M R(\delta): 1.01\left(d, J=7.6, \mathrm{CH}_{3}\right), 1.04\left(t, J=6.2, \mathrm{CH}_{3}\right), 1.44\left(q d, J_{\mathrm{d}}\right.$ $\left.=3.2, J_{\mathrm{q}}=12.2,1 \mathrm{H}\right), 1.69-1.77(m, 2 \mathrm{H}), 1.96\left(q, J=7.4, \mathrm{CH}_{2}\right), 2.12\left(t d, J_{\mathrm{d}}=2.4, J_{\mathrm{t}}=11.8,1 \mathrm{H}\right), 2.47-2.55$ $(m, 2 \mathrm{H}), 2.71-2.77(m, 2 \mathrm{H}), 2.95-3.01(m, 2 \mathrm{H}), 4.58\left(t, J_{\mathrm{t}}=11.4, \mathrm{C}_{4}-\mathrm{H}\right), 7.06-7.45\left(m, 10 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R$ (ppm): $9.69,16.35,28.44,30.41,33.70,34.00,53.11,57.25,60.34,60.74,125.98,128.21,128.32,128.58$, 129.38, 129.58, 130.98, 140.14, 174.24; MS (C.I.): 259 (M-91, 45), 351 (M+1, 100).

15.1. (\pm)-cis-N-(3-Ethyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.2cis).

From (\pm)-5.2cis. ($0.9 \mathrm{~g}, 0.0029 \mathrm{~mol}$); Yield: $1.65 \mathrm{~g}, 95 \%$; m.p. (dec.): $142-144^{\circ} \mathrm{C}$.
Free base: $I R\left(\mathrm{~cm}^{-1}\right)$: $3061,3026,2958,1657,1595,1495,1454,1374,1273,1246,1158,1125,1092$, 1056, 1032, 985, 751, 702; ${ }^{1} H-N M R(\delta): 0.95\left(t, J=7.4, \mathrm{CH}_{3}\right), 1.01\left(t, J=7.2, \mathrm{CH}_{3}\right), 1.21-1.32(m, 1 \mathrm{H}), 1.39$ $\left(d d, J_{1}=4.2, J_{2}=12,1 \mathrm{H}\right), 1.52-1.64(m, 2 \mathrm{H}), 1.94\left(q, J=7.2, \mathrm{CH}_{2}\right), 2.04-2.14(m, 2 \mathrm{H}), 2.38-2.60(m, 3 \mathrm{H})$, $2.67-2.81(\mathrm{~m}, 3 \mathrm{H}), 3.02\left(d d, J_{1}=2.4, J_{2}=11.8,1 \mathrm{H}\right), 4.40\left(d t, J_{\mathrm{t}}=4.6, J_{\mathrm{d}}=12.4, \mathrm{C}_{4}-\mathrm{H}\right), 7.05-7.36(\mathrm{~m}$, $\left.10 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} \mathrm{C}$-NMR (ppm): 9.53, 12.13, 18.74, 26.97, 28.99, 33.67, 38.15, 54.10, 58.19, $60.25,125.74,127.85$, 128.16, 128.60, 128.80, 128.98, 130.13, 130.71, 140.50, 140.72, 174.39; MS (C.I.): 365 (M+1, 100).
15.2 (\pm)-trans-N-(3-Ethyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.2trans).

From (\pm)-5.2trans. ($0.5 \mathrm{~g}, 0.00162 \mathrm{~mol}$). Yield: $0.74 \mathrm{~g}, 97 \%$; m.p. (dec.): $135-136^{\circ} \mathrm{C}$.
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3061,3026,2936,2877,1657,1595,1495,1462,1377,1315,1260,1240,1133$, 1076, 1047, 744, 703; ${ }^{l} H-N M R(\delta): 0.94\left(t, J=7.2, \mathrm{CH}_{3}\right), 1.02\left(t, J=7.4, \mathrm{CH}_{3}\right), 1.21-1.31(\mathrm{~m}, 1 \mathrm{H})$, $1.42-1.50(m, 2 \mathrm{H}), 1.70-1.81(m, 3 \mathrm{H}), 1.95\left(q, J=7.6, \mathrm{CH}_{2}\right), 2.09\left(t d, J_{\mathrm{d}}=2.2, J_{\mathrm{t}}=12,1 \mathrm{H}\right), 2.48-2.60(\mathrm{~m}$, $2 \mathrm{H}), 2.74(t, J=6.6,2 \mathrm{H}), 2.99(d, J=11.2,1 \mathrm{H}), 3.13(d, J=10,1 \mathrm{H}), 4.61\left(t d, J_{\mathrm{d}}=3, J_{\mathrm{t}}=12, \mathrm{C}_{4}-\mathrm{H}\right)$, $7.06-7.42\left(m, 10 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm}): 9.56,11.09,22.83,28.33,30.32,33.61,40.30,52.82,55.44,58.08$, $60.45,125.87,128.11,128.21,128.47,129.05,129.33,129.47,130.95,138.56,140.03,174.11 ; M S$ (C.I.): 273 (M-91, 30), 365 (M+1, 100), 407 (M+43, 20).
16.1 (\pm)-cis-N-(3-isopropyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.3cis).

From (\pm)-5.3cis. ($1.0 \mathrm{~g}, 0.0031 \mathrm{~mol})$. Yield: $1.36 \mathrm{~g}, 94 \%$; m.p. (dec.): $122-124^{\circ} \mathrm{C}$.
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3061,3030,2951,2944,1652,1595,1540,1495,1461,1455,1397,1382,1259$, 1181, 1141, 1130, 1074, 1050, 974, 940, 900, 751, 703; ${ }^{l} H-N M R(\delta): 1.00\left(t, J=7.2, \mathrm{CH}_{3}\right), 1.01(d, J=6.8$, CH_{3}), $1.11\left(d, J=6.4, \mathrm{CH}_{3}\right), 1.16-1.68(m, 3 \mathrm{H}), 1.87-1.98\left(m, \mathrm{CH}_{2}\right), 2.00-2.11(m, 2 \mathrm{H}), 2.14-2.24(m, 2 \mathrm{H})$, $2.35-2.57(m, 2 H), 2.67-2.76(m, 2 \mathrm{H}), 4.60\left(q u i n t, J=5.0, \mathrm{C}_{4}-\mathrm{H}\right), 7.04-7.43\left(10 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm})$: 9.60, 20.92, 24.49, 26.06, 28.48, 29.08, 33.39, 42.39, 52.57, 54.00, 60.56, 125.90, 128.09, 128.27, 128.63, 129.02, 131.05, 140.43, 141.43, 174.75; MS (C.I.): 287 (M-91, 15), 379 (M+1, 100), 422 (M+44, 5).
16.2 (\pm)-trans-N-(3-Isopropyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.3trans).

From (\pm)-5.3trans. ($0.7 \mathrm{~g}, 0.0022 \mathrm{~mol}$). Yield: $0.98 \mathrm{~g}, 95 \%$; m.p. (dec.): $115-117^{\circ} \mathrm{C}$.
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3060,3028,2956,2938,1652,1595,1541,1495,1463,1455,1391,1372,1255$, $1181,1142,1125,1071,1049,974,943,898,752,703,{ }^{l} H-=N M R(\delta): 0.98\left(d, J=6.8, \mathrm{CH}_{3}\right), 1.01(d, J=6.8$, $\left.\mathrm{CH}_{3}\right), 1.02\left(t, J=7.4, \mathrm{CH}_{3}\right), 1.15-1.33(m, 1 \mathrm{H}), 1.48\left(t d, J_{\mathrm{d}}=4.0, J_{\mathrm{t}}=12.4,2 \mathrm{H}\right), 1.70-1.82(m, 2 \mathrm{H}), 1.91(q, J$ $\left.=5.2, \mathrm{CH}_{2}\right), 1.97-2.16(m, 2 \mathrm{H}), 2.46-2.62(m, 2 \mathrm{H}), 2.64-2.80(m, 2 \mathrm{H}), 2.88-3.04(m, 2 \mathrm{H}), 4.83\left(t d, J_{\mathrm{d}}=3.6\right.$, $\left.J_{\mathrm{t}}=12.0, \mathrm{C}_{4}-\mathrm{H}\right), 7.04-7.43\left(m, 10 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm}): 9.64,16.78,21.00,25.89,28.39,30.55,33.72$, $43.43,53.00,60.72,125.88,128.14,128.25,128.49,129.27,131.18,138.61,140.10,174.02 ;$ MS (C.I.): 287 (M-91, 15), 379 (M+1, 100).

17.1. (\pm)-cis-N-(3-Butyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.4cis).

From (\pm)-5.4cis: ($1.5 \mathrm{~g}, 0.0045 \mathrm{~mol}$). Yield: $2.08 \mathrm{~g}, 96 \%$; m.p. (dec.): $97-98^{\circ} \mathrm{C}$).
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3462,3065,3026,2955,2868,2797,1655,1595,1495,1451,1421,1375,1343$, 1326, 1305, 1274, 1246, 1159, 1127, 1091, 1049, 1030, 768, 745, 704, 594, 507, ${ }^{l} H-N M R(\delta): 0.92(t, J=7$, $\left.\mathrm{CH}_{3}\right), 1.01\left(t, J=7.6, \mathrm{CH}_{3}\right), 1.21-1.49(m), 1.97\left(q, J=6, \mathrm{CH}_{2}\right), 2.04-2.15(m), 2.43-2.61(m), 2.66-2.78$
$(m), 2.93(t, J=2.5,1 \mathrm{H}), 2.99(t, J=2.4,1 \mathrm{H}), 4.38\left(d t, J_{\mathrm{d}}=12.4, J_{\mathrm{t}}=4.5, \mathrm{C}_{4}-\mathrm{H}\right), 7.0-7.42\left(m, 10 \mathrm{H}_{\mathrm{Ar}}\right)$; ${ }^{13} C-N M R(p p m): 9.52,14.10,22.90,25.69,27.01,28.99,30.06,33.63,36.49,54.11,55.01,58.15,60.16$, 125.77, 127.85, 128.15, 128.61, 128.81, 128.96, 130.13, 130.71, 140.56, 140.78, 174.40; MS (C.I.): 393 (M+1, 100).
17.2. (\pm)-trans-N-(3-Butyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.4trans).

From (\pm)-5.4trans: ($0.8 \mathrm{~g}, 0.0024 \mathrm{~mol}$). Yield: $1.13 \mathrm{~g} ; 98 \%$ m.p. (dec.): $90-92^{\circ} \mathrm{C}$.
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3061,3026,2952,2932,1658,1595,1542,1495,1455,1390,1377,1257,1240$, 1137, 1076, 746, 703; ${ }^{1} H-N M R(\delta): 0.94\left(t, J=7.0, \mathrm{CH}_{3}\right), 1.03\left(t, J=7.4, \mathrm{CH}_{3}\right), 1.16-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.77(t, J$ $=11.0,3 \mathrm{H}), 1.96\left(q, J=7.4, \mathrm{CH}_{2}\right), 2.11(t, J=10.2,1 \mathrm{H}), 2.48-2.60(m, 2 \mathrm{H}), 2.70-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.99(d, J=$ $11.2,1 \mathrm{H}), 3.13(d, J=9.8,1 \mathrm{H}), 4.61\left(t, J=7.0, \mathrm{C}_{4}-\mathrm{H}\right), 7.06-7.42\left(m, 10 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm}): 9.64,14.00$, $22.94,28.33,28.90,29.81,30.35,33.58,38.84,52.82,55.57,58.57,60.43,125.87,126.11,128.21,128.47$, $129.05,129.27,129.45,130.91,138.60,140.03,174.15$; MS (C.I.): $302(\mathrm{M}-90,80) 393(\mathrm{M}+1,100) 436$ $(\mathrm{M}+44,80) 449(\mathrm{M}+57,40)$.

18.1. (\pm)-cis-N-(3-Benzyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.5cis).

From (\pm)-5.5cis ($0.90 \mathrm{~g}, 0.0024 \mathrm{~mol}$). Yield: $1.18 \mathrm{~g}, 95 \%$; m.p. (dec.): $129-131^{\circ} \mathrm{C}$.
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3083,3061,3024,2937,2860,1657,1595,1495,1453,1319,1262,1180,1139$, $1095,1070,1037,903,749,734,701,{ }^{1} H-N M R(\delta): 1.07\left(t, J=7.6, \mathrm{CH}_{3}\right), 1.26-1.34(m, 1 \mathrm{H}), 1.51\left(q d, J_{\mathrm{d}}=\right.$ $\left.4.2, J_{\mathrm{q}}=12.6,1 \mathrm{H}\right), 2.00\left(q, J=6.0, \mathrm{CH}_{2}\right), 1.94-2.09(m, 2 \mathrm{H}), 2.25-2.40(m, 1 \mathrm{H}), 2.42-2.52(m, 1 \mathrm{H})$, $2.55-2.67(m, 3 H), 2.73-2.88(m, 4 \mathrm{H}), 4.49\left(d t, J_{\mathrm{t}}=3.4, J_{\mathrm{d}}=12.4, \mathrm{C}_{4}-\mathrm{H}\right), 7.07-7.35\left(m, 10 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R$ (ppm): 9.64, 26.82, 28.95, 32.17, 33.43, 38.78, 53.68, 53.97, 58.19, 59.83, 125.45, 125.63, 127.81, 127.98, $128.52,128.83,128.96,129.16,129.98,130.54,140.49,141.16,174.39$; MS (C.I.): 335 (M-91, 15), 427 ($\mathrm{M}+1,100$).
18.2. (\pm)-trans-N-(3-Benzyl-1-phenethylpiperidin-4-yl)-N-phenylpropionamide (6.5trans).

From (\pm)-5.5trans ($0.40 \mathrm{~g}, 0011 \mathrm{~mol}$); Yield: $0.55 \mathrm{~g}, 97 \%$; m.p. (dec.): $125-126^{\circ} \mathrm{C}$).
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3085,3061,3026,2937,2860,2804,1658,1595,1495,1453,1315,1259,1177$, 1137, 1092, 1073, 1032, 911, 749, 734, 701; ${ }^{1} H-N M R(\delta): 1.04\left(t, J=7.6, \mathrm{CH}_{3}\right), 1.56\left(t d, J_{\mathrm{d}}=4.0, J_{\mathrm{t}}=12.4\right.$, $1 \mathrm{H}), 1.83(t, J=10.6,2 \mathrm{H}), 1.99\left(q, J=7.6, \mathrm{CH}_{2}\right), 2.12\left(t d, J_{\mathrm{d}}=1.6, J_{\mathrm{t}}=12.0,1 \mathrm{H}\right), 2.34-2.51(m, 4 \mathrm{H})$, 2.53-2.69 ($m, 2 \mathrm{H}$), $2.78\left(d d, J_{1}=2.2, J_{2}=10.2,1 \mathrm{H}\right), 3.00(d, J=9.8,1 \mathrm{H}), 3.24\left(d d, J_{1}=2.2, J_{2}=14,1 \mathrm{H}\right)$, $4.75\left(t, J=10.0, \mathrm{C}_{4}-\mathrm{H}\right), 7.04-7.45\left(m, 15 \mathrm{H}_{\mathrm{A}_{\mathrm{r}}}\right):{ }^{13} C-N M R(\mathrm{ppm}): 9.67,28.50,30.65,33.49,36.82,40.02$, $52.69,58.00,58.41,60.23,125.90,126.91,128.25,128.36,128.49,128.62,129.43,130.96,138.76,139.65$, 139.99, 174.46; MS (C.I.): 335 (M-91, 10), 427 (M+1, 100).
19.1. (\pm)-cis-N-(1,3-Diphenethylpiperidin-4-yl)-N-phenylpropionamide (6.6cis).

From (\pm)-5.6cis: (0.60 g, 0.0016 mol); Yield: 0.80 g; 94 \%; m.p. (dec.): $119-121^{\circ} \mathrm{C}$.
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3084,3061,3026,2938,2803,2773,1658,1594,1495,1453,1374,1272,1245$, 1140, 1092, 1076, 1031, 1007, 749, 701; ${ }^{1} H-N M R(\delta): 1.00\left(t, J=7.2, \mathrm{CH}_{3}\right), 1.22-1.35(\mathrm{~m}), 1.37-1.50(\mathrm{~m})$, $1.70-1.81(m), 1.90\left(q, J=7.4, \mathrm{CH}_{2}\right), 1.00-2.12(m), 2.13-2.18(m), 2.43-2.62(m), 2.66-2.81(m), 2.94-2.98$ $(m), 3.00-3.04(m), 4.37\left(d t, J_{\mathrm{t}}=4.6, J_{\mathrm{d}}=12.6, \mathrm{C}_{4}-\mathrm{H}\right), 7.05-7.20\left(m, 15 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm}): 9.57,27.02$, $27.75,28.97,33.63,34.24,36.70,53.93,55.08,58.33,59.91,125.54,125.77,127.84,128.19,128.28,128.34$, $128.60,128.84,129.05,130.09,130.58,140.54,140.77,142.26,174.46 ; M S$ (C.I.): 441 (M+1,100).
19.2. (\pm)-trans-N-(1,3-Diphenethylpiperidin-4-yl)-N-phenylpropionamide (6.6trans).

From (\pm)-5.6trans: ($0.40 \mathrm{~g}, 0.0010 \mathrm{~mol}$); Yield: 0.43 g ; 97%. m.p. (dec.): $110-112{ }^{\circ} \mathrm{C}$.
Free base: $I R\left(\mathrm{~cm}^{-1}\right): 3084,3061,3026,2938,2811,1658,1594,1495,1452,1370,1269,1251,1141$, $1095,1080,1032,1004,749,701{ }^{1} H-N M R(\delta): 1.00\left(t, J=7.6, \mathrm{CH}_{3}\right), 1.25-1.41(m), 1.49-1.80(m), 1.90(q$, $\left.J=8.0, \mathrm{CH}_{2}\right), 2.04-2.19(\mathrm{~m}), 2.48-2.63(\mathrm{~m}), 2.68-2.80(\mathrm{~m}), 2.94-3.00(\mathrm{~m}), 3.22-3.28(\mathrm{~m}), 4.64\left(\mathrm{td}, J_{\mathrm{d}}=4, J_{\mathrm{t}}\right.$ $\left.=11, \mathrm{C}_{4}-\mathrm{H}\right), 7.05-7.20\left(m, 15 \mathrm{H}_{\mathrm{Ar}}\right) ;{ }^{13} C-N M R(\mathrm{ppm}): 9.61,25.93,27.02,30.67,32.05,33.69,35.51,52.17$, $54.22,57.83,59.07,125.51,125.81,127.79,128.29,128.30,128.41,128.66,128.89,129.05,130.10,130.61$, $140.55,140.81,142.32,174.51 ; M S$ (C.I.): 441 (M+1, 100).

СИНТЕЗА И ПРЕЛИМИНАРНИ ФАРМАКОЛОШКИ ТЕСТОВИ РЕЦЕМСКИХ cis И trans 3-АЛКИЛ АНАЛОГА ФЕНТАНИЛА
 М. Д. ИВАНОВИЋ ${ }^{\text {a }}$, И. В. МИЋОВИЋ ${ }^{\text {a }}$, С. ВУЧКОВИЋ ${ }^{б}$, М. ПРОСТРАН ${ }^{б}$, З. тОДОРОВИЋ ${ }^{\text {б }}$, В. Д. КИРИЦОЈЕВИЋ ${ }^{\text {B }}$, Ј. Б. ЂОРТЕВИЋ ${ }^{\text {и }}$ Љ. ДОШЕН-МИЋОВИЋ ${ }^{\text {a }}$
 Беог̄раду, Немањина 6, 11080 Беог̄рад-Земун

Развијен је општи метод за синтезу 3 -алкил аналога фентанила (тј. cis и trans 3 -алкил-4-анилидопиперидина 6.1-6.6) у пет фаза. Полазни N-фенетил-4-пиперидон 1 прво је преведен у циклохексилимински дериват $\mathbf{2}$, α-депротонован бутиллитијумом, а постали имински анјон ефикасно моноалкилован примарним и секундарним алкилхалогенидима. После благе киселе хидролизе, настали 3-алкил-4-пиперидони 3.1-3.6 изоловани су у добрим приносима (79-85 \%), затим кондензовани са анилином до имина 4.1-4.6. Редукцијом ових имина ($\mathrm{LiAlH}_{4} / \mathrm{THF}$) добијене су cistrans смесе 3 -алкил-4-анилинопиперидина 5.1-5.6. Квантитативним хроматографским раздвајањем дијастереоизомера на стубу $\mathrm{Al}_{2} \mathrm{O}_{3}$ изоловани су чисти cis 5.1-5.6 (принос 29-51 \%) и trans 5.1-5.6 (принос $19-27 \%$), где је cistrans однос био у опсегу 7/3-6/4. Синтеза је завршена N-ациловањем пречишћених интермедијера 5.1-5.6 помоћу пропионил-хлорида, при чему су постали cis и trans 3-алкил-4-анилидопиперидини 6.1-6.6 (принос $\approx 95 \%$, као монооксалатне соли). Ни у једној фази није покушано раздвајање енантиомера. Релативна, cistrans, стереохемија прелиминарно је одређена из ${ }^{1} \mathrm{H}$-NMR спектра. Од дванаест синтетисаних 3-алкил-фентанила, десет једињења (два позната и осам нових, сва у облику моноокасалатних соли) прелиминарно су тестирана као аналгетици на пацовима, поредећи активност са фентанилом. Осим познатог (\pm)-cis-3-Ме фентанила $6.1 \mathrm{cis},(8 \times$ фентанил), и новог (\pm)-cis-3-Et фентанила $6.2 \mathrm{cis},(1,5 \times$ фентанил), сви остали били су мање активни или неактивни. Изведени су одређени, прелиминарни закључци у вези односа структуре и активности у овој серији деривата.
(Примљено 9. септтембра 2003, ревидирано 4. фебруара 2004)

REFERENCES

1. a) A. F. Casy, R. T. Parfitt, Opioid Analgesics, Plenum Press, N. Y., USA, 1986, pp. 287-301; b) A. F. Casy, "Opioid Receptors and Their Ligands", in Advances in Drug Research, B. Testa, Ed., Vol 18, Academic Press, London, 1980, pp. 178-272; c) M. Williams, E. A. Kowaluk, S. P. Arneric, J. Med. Chem. 42 (1999) 1481
2. The Merck Index, $13^{\text {th }}$ Ed., Merck \& Co., Inc., New York, 2002
3. G. Capogna, M. Camorcia, M. O. Columg, Anesth. Analg. 96 (2003) 1178
4. M. K. Greenwald, H. L. June, M. L. Stitzer, A. P. Marko, J. Pharmacol. Exp. Ther. 277 (1996) 1228
5. M. L. Black, J. L. Hill, J. P. Zacny, Anesthesiology 90 (1999) 718
6. a) W. Jeal, P. Benfield, Drugs 53 (1997) 109; b) http://www.duragesic.com
7. a) A. Moresco, R. S. Larsen, J. M. Sleeman, M. A. Wild, J. S. Gaynor, J. Zoo. Wildl. Med. 32 (2001) 81; b) J. Mortenson, U. Bechert, J. Zoo. Wildl. Med. 32 (2001) 217
8. a) V. D. Kiricojević, M. D. Ivanović, I. V. Mićović, J. B. Djordjević, G. M. Roglić, Lj. Došen-Mićović, J. Serb. Chem. Soc. 67 (2002) 793; b) I. V. Mićović, M. D. Ivanović, S. M. Vučković, M. Š. Prostran, Lj. Došen-Mićović, V. D. Kiricojević, Bioorg. Med. Chem. Lett. 10 (2000) 2011; c) I. V. Mićović, M. D. Ivanović, S. M. Vučković, D. Jovanović-Mićić, D. Beleslin, Lj. Došen-Mićović, V. D. Kiricojević, Heterocyclic Commun. 4 (1998) 171 and the references cited therein; d) I. V. Mićović, G. M. Roglić, M.
D. Ivanović, Lj. Došen-Mićović, V. D. Kiricojević, J. B. Popović, J. Chem. Soc., Perkin Trans. 1 (1996) 2041; e) U. S. Patent 5,489,689 (1996); f) U. S. Patent 4,179,569 (1979); g) Van Daele, M. F. L. De Bruyn, J. M. Boey, S. Sanczuk, J. T. M. Agten, P. A. J. Janssen, Arzneim-Forsch. (Drug Res.) 26 (1976) 1521; h) L. V. Kudzma, S. A. Severnak, M. J. Benvenga, E. F. Ezell, M. H. Ossipov, V. V. Knight, F. G. Rudo, H. K. Spencer, T. C. Spaulding, J. Med. Chem. 32 (1989) 2534; i) M. D. Ivanović, Ph. D. Thesis, Chemistry Dept., University of Belgrade (1998)
9. a) C. J. Endres, B. Bencherif, J. Hilton, I. Madar, J. J. Frost, Nucl. Med. Biol. 30 (2) (2003) 177; b) B. Bencherif, P. N. Fuchs, R. Sheth, R. F. Dannals, J. N. Campbell, J. J. Frost, Pain 99 (2002) 589; c) P. S. Villemagne, R. F. Dannals, H. T. Ravert, J. J. Frost, Eur. J. Nucl. Med. Mol. Imaging 29 (2002) 1385; d) D. M. Jewett, Nucl. Med. Biol. 28 (6) (2001) 733; e) J. J. Frost, Nucl. Med. Biol. 28 (2001) 509
10. a) N. Riley, D. B. Hale, M. C. Wilson, J. Pharm. Sci. 62 (1973) 983; b) W. F. M. Van Bever, C. J. E. Niemegeers, P. A. J. Janssen, J. Med. Chem. 17 (1974) 1047
11. A. F. Casy, F. O. Ogungbamila, Eur. J. Med. Chem. 18 (1983) 56
12. a) A. Hosomi, Y. Araki, H. Sakurai, J. Am. Chem. Soc. 104 (1982) 2081; b) Encyclopedia of Reagents for Organic Synthesis, L. A. Paquette, Ed., Vol 1, Wiley, N. Y., U.S.A., 1995, p. 178; c) D. Enders, H. Kipphardt, P. Fey, Org. Synth., J. P. Freeman, Ed., Vol 8, Willey, N. Y., U.S.A., 1993, p. 403
13. A. F. Casy, M. M. A. Hassan, A. B. Simmonds, D. Staniforth, J. Pharm. Pharmacol. 21 (1969) 434
14. N. Lalinde, J. Moliterni, D. Wright, H. K. Spencer, M. H. Ossipov, T. C. Spaulding, F. G. Rudo, J. Med. Chem. 33 (1990) 2876
15. a) A. F. Casy, M. R. Huckstep, J. Pharm. Pharmacol. 40 (1988) 605; b) J. R. Bagley, R. L. Wynn, F. G. Rudo, B. M. Doorley, H. K. Spencer, T. Spaulding, J. Med. Chem. 32 (1989) 663
16. a) M. W. Lobbezoo, W. Soudijn, J. Med. Chem. 24 (1981) 777; b) T. N. Riley, J. R. Bagley, J. Med. Chem. 22 (1979) 1167; c) J. R. Bagley, T. N. Riley, J. Het. Chem. 14 (1977) 599
17. P. A. J. Janssen, C. J. E. Niemegeers and J. G. H. Dony, Arzneim-Forsch. (Drug Res.) 13 (1963) 502
18. R. J. Tallarida, R. B. Murray, Manual of Pharmacologic Calculations with Computer Programs, $2^{\text {nd }}$ Ed. Springer Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1986
19. Sigma Chemical Co. St. Louis, USA
20. M. D. Ivanović, unpublished results.
