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ABSTRACT Here, we report the complete genome sequence of the race 4 strain Xantho-
monas campestris pv. campestris SB80, which was isolated from a symptomatic white head
cabbage leaf in Samsun Province, Turkey, in 2019. The genome consists of a circular chromo-
some (5,129,762 bp) with a G1C content of 64.98%, for which 4,159 putative protein-coding
genes, 2 rRNA operons, 54 tRNAs, and 86 noncoding RNAs (ncRNAs) were predicted.

Bacteria of the species Xanthomonas campestris cause black rot, which is the bacterial
disease that causes the most devastation to Brassicaceae family plants worldwide. The

pathovar X. campestris pv. campestris has been divided into 11 races based on interactions
with a differential set of Brassica cultivars, with races 1 and 4 being the most prevalent and
destructive (1, 2). Only one draft genome sequence of a race 4 strain, isolated in Chile in
2001, is available at NCBI GenBank (3).

X. campestris pv. campestris strain SB80 was isolated from a symptomatic leaf of white
head cabbage (Brassica oleracea var. capitata) growing in a field in Samsun Province, Turkey,
in 2019, as described (4). The race of strain SB80 was determined by evaluating the reactions
of various Brassica sp. genotypes (compatible, Miracle F1, SxD1, Wirosa F1; incompatible,
FBLM2, PIC1, Seven Top Turnip, COB60, Just Right Hybrid Turnip) (1). For DNA isolation, a
single colony was grown at 28°C on PSA medium (0.5% peptone, 2% sucrose, 1.5% agar)
for 24 h. Bacteria were then resuspended in 10 mMMgCl2 and diluted to an optical density
at 600 nm of 1.0. Cells from 2 mL of this suspension were harvested by centrifugation, washed
once with 10 mM MgCl2, and genomic DNA was isolated using the Genomic-tip 100/G proto-
col (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

For library construction and sequencing, performed by OhmX.bio (Ghent, Belgium),
1 mg DNA was mechanically fragmented using g-TUBE devices (Covaris, Woburn, MA) at
approximately 13 kb. The sequencing library was prepared using the ligation sequencing kit
(SQK-LSK110) and the native barcode expansion (PCR-free) pack (EXP-NBD114) based on the
manufacturer’s protocol (ONT, Oxford, UK). The samples were sequenced on a GridION
R9.4 flow cell for a total of 3 days. Bases were called using MinKNOW v21.10.8. The
demultiplexed sequence reads (34,944; N50, 14,461 bp) were provided by OhmX.bio as
FASTQ files.

Adapter sequences were trimmed from the reads using Porechop v0.2.1 (5). The raw
reads were checked for quality using NanoFilt (6). The sequences were assembled using
Flye v2.9 (7). Default parameters were used for all software unless otherwise specified. Closer
inspection revealed issues with homopolymeric nucleotide runs, some of which were man-
ually changed to match the high-quality reference genome sequences for strains ATCC
33913 and 8004 (8, 9). In addition to a large contig of 5.1 Mbp, corresponding to the circular
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chromosome, the Flye assembly resulted in a second contig of 23 kb, which was almost
identical to a region in the large contig and did not encode typical plasmid-associated
genes, suggesting an assembly artifact. Notably, this 23-kb region contained a perfect tandem
duplication of 1,792 bp in the chromosome but not in the smaller contig. Again, comparison
with the two reference genomes prompted us to delete the smaller contig from the assembly
and to remove one copy of the duplication in the chromosome.

Assembly and polishing yielded one circular chromosome of 5,129,762 bp with a typical
G1C content of 64.98%, corresponding to 136� sequence coverage. The chromosome was
annotated using GeneMarkS-21 (10), as implemented in the NCBI Prokaryotic Genome
Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/), which predicted
a total of 4,520 genes, including 4,159 coding genes, 215 pseudogenes, 86 noncoding RNAs
(ncRNAs), 54 tRNAs, and 2 rRNA operons (5S, 16S, 23S).

This genome sequence for X. campestris from Turkey will facilitate the identification
of race-specific factors in X. campestris pv. campestris and thus contribute to the development
and employment of resistant cabbage cultivars. Interestingly, this strain does not contain an
endogenous plasmid, as the other sequenced race 4 strain does. Calculation of genome-wide
average nucleotide identities demonstrates that both sequenced race 4 strains belong to two
different clades of X. campestris pv. campestris (11, 12).

Data availability. The genome sequence and raw sequencing reads for strain SB80
were deposited under GenBank accession number CP089952, BioProject accession number
PRJNA785926, BioSample accession number SAMN23597367, and SRA accession number
SRR17407536.
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