The effects of casing soil treatment with *Bacillus subtilis* Ch-13 biofungicide on green mould control and mushroom yield

Ivana Potočnik^{1*}, Emil Rekanović¹, Biljana Todorović¹, Jelena Luković¹, Dušanka Paunović², Olja Stanojević³ and Svetlana Milijašević-Marčić¹

¹Institute of Pesticides and Environmental Protection, Banatska 31 b, 11080 Belgrade, Serbia

²University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia ³University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia *Corresponding author: ivana.potocnik@pesting.org.rs

> Received: 11 April 2019 Accepted: 16 May 2019

SUMMARY

The impact of a biofungicide based on *Bacillus subtilis* Ch-13 on mushroom yield and efficacy in suppression of *Trichoderma aggressivum* f. *europaeum* T77 from Serbia was estimated in comparision with a similar microbial fungicide, *Bacillus velezensis* QST713, and the chemical fungicide prochloraz manganese. The biofungicide *B. velezensis* QST713 is registered for treatments of mushrooms and other crops in many countries but it is not currently available on the Serbian market. The tested *B. subtilis* Ch-13 fungicide enhanced mushroom yield 12%, compared with an uninoculated control, and notably more than *B. velezensis* QST713 applied at its higher test concentrations. Regarding the efficacy of the biofungicides in control of the compost pathogen *T. aggressivum* f. *europaeum*, *B. subtilis* Ch-13 applied in concentration of 3×10^8 CFU per m² showed higher efficacy than the higher concentrations (5×10^9 and 1×10^{10} CFU per m²) of *B. velezensis* QST713. The biofungicide based on *B. subtilis* Ch-13 should be further investigated regarding its different modes of application to ensure better efficacy in disease control as it showed beneficial features in both promoting *A. bisporus* production and suppressing the growth of the aggressive compost pathogen *T. aggressivum*, the causal agent of devastating green mould disease.

Keywords: cultivated mushroom; Trichoderma aggressivum; Bacillus subtilis; biofungicides

INTRODUCTION

Green mould, caused by compost-inhabiting *Trichoderma aggressivum* Samuels & W. Gams (Seaby,

1996; Samuels et al., 2002), is the most serious fungal disease of cultivated mushroom (*Agaricus bisporus* L.). Serious outbreaks of disease result in great yield losses. In the 1990s, the aggressive species appeared

simultaneously in the British Isles and North America (Doyle, 1991; Romaine et al., 1996) and rapidly spread to other European countries, including Serbia, and to other continents (Kosanović et al., 2013). Its two forms, *Trichoderma aggressivum* f. *aggresivum* Samuels & W. Gams in North America and *T. aggressivum* f. *europaeum* Samuels & W. Gams in Europe, are phylogenetically closely related to *T. harzianum* Rifai. They emerged by population adaptation to their respective environmental conditions in mushroom-growing facilities and have never been found in the wild (Kredics et al., 2010).

Only a few fungicides have been registered and officially recommended for mushroom cultivation worldwide, i.e. prochloraz and metraphenone, while chlorothalonil, and the benzimidazoles thiabendazole and thiophanate-methyl are still in use in North America (Romaine et al., 1996; Grogan & Gaze, 2000). Over time, Trichoderma species have developed resistance to benzimidazoles in cultivated mushroom farms (Grogan & Fletcher, 1993; Grogan et al., 1996; Romaine et al., 2005; Grogan, 2008). The fungicide prochloraz has been shown to be very susceptible to degradation in soils. Grogan et al. (2000) reported a decrease in its concentration to less than 25% in casing soil, following two split applications. Also, the authors noted the rate of disappearance of the fungicide to be faster after the second spray (one week later) compared to the first application (after 18 days), which suggests microbial degradation.

Fungicides usually reduce the mycelial growth of A. bisporus to some extent, and their application must always be a balance between the benefit from disease control and reduced vigor of mushroom crop. Many chemicals have been withdrawn from the market over the past two decades. Moreover, there is an increased demand for biorational measures to control outbreaks rather than resorting to chemicals (Grogan, 2008). An alternative to chemical control of Trichoderma green mould is the application of beneficial microorganisms, mainly Bacillus species as biocontrol agents (Savoie et al. 2001; Védie & Rousseau, 2008). The most studied Bacillus subtilis (Ehrenberg) Cohn strain used as the biofungicide QST713 has been recently renamed to Bacillus velezensis (Pandin et al., 2018a,b). However, it is not registered in Serbia. The biocontrol strain B. velezensis QST713 was chosen for a correlation test with B. subtilis Ch-13, the newly introduced strain with antifungal and phytostimulating characteristics, which has been registered as a microbiological fertilizer, fungicide and wheat seed disinfectant in the Russian Federation, Kazakhstan and Moldova (Chebotar et al., 2009; Kayin et al., 2015). Both Bacillus strains

were examined for their impact on mushroom yield and efficacy against *T. aggressivum* f. *europaeum* from Serbia, when applied to mushroom casing soil and in comparison with the fungicide prochloraz manganese in a mushroom growing room.

MATERIAL AND METHODS

Fungal species and culture conditions

The pathogenic fungus T. aggressivum f. europaeum T77, originally isolated from mushroom compost in a Serbian mushroom farm at Barajevo-Lisovići in 2010, was taken from the culture collection of the Institute of Pesticides and Environmental Protection (Belgrade, Serbia). The strain was then identified based on morphophysiological characteristics and ITS1/ITS4 sequence analyses (Kosanović et al., 2013). The fungus was maintained on potato dextrose agar (PDA) medium (fresh-peeled potatoes; dextrose, Torlak, Serbia; agar, Torlak, Serbia) at 4°C. For inoculum preparation, agar discs with the fungal isolates were inoculated onto PDA medium and the plates were incubated for three days at 22°C. For in vivo trials, conidia from three-day old cultures were flooded with 10 ml of sterile distilled water and Tween 20 (v/v 0.01%), and filtered through double layers of cheesecloth.

Antifungal agents

The biofungicide Ekstrasol F SC (BioGenesis d.o.o., Serbia), based on *Bacillus subtilis* Ch-13 1 × 10⁷ CFU ml⁻¹, was tested as a potential antifungal agent in treatment of casing soil on substrate spawned with *A. bisporus* Sylvan A15, against the isolate of *T. aggressivum* f. *eurpaeum* T77 in a mushroom growing room. The biological efficacy and effectiveness of the biofungicide was evaluated by comparison with the commercial biofungicide Serenade* WP (AgraQuest, Canada) based on *Bacillus velezensis* [*B. velezensis* QST 713 (5.13 × 10¹⁰ CFU g⁻¹) 15.7%; other ingredients 84.2%] and the chemical fungicide prochloraz manganese (Octave* WP, Bayer Crop Science, Germany, content of prochloraz manganese complex 50%; kaolin 35%; and other ingredients 15%) (Table 1).

Tests in mushroom growing room

Mushroom substrate was provided by the compost producer »Uča & Co.« Vranovo, Smederevo, Serbia. Plastic boxes sized $0.340 \times 0.215 \times 0.130$ m ($l \times w \times h$)

were filled with 1.5 kg of compost mixed with 15 g of grain spawn of A.bisporus A15 (Sylvan, Hungária zRt) to prepare 1% spawned substrate. Twelve plastic boxes were used in calculations as 1 m² of casing surface for treatment. Inoculation of T. aggressivum f. europaeum T77 was performed with the culture grown on PDA at 25°C for three days. Mycelia of the pathogen was scraped from the surface of PDA plates, mixed with water and Tween 20 (v/v 0.01%) (REANAL Finomvegyszergyár Rt., Hungary, No.: 805383) and filtered through sterile gauze. Spore concentration was determined by counting on a hemocytometer and the suspension was diluted to achieve the final concentration of 10⁶ conidia ml⁻¹. Inoculation of *T. aggressivum* f. europaeum T77 was performed two days after spawned compost was placed into boxes, by pipetting spore suspension (10⁶ conidia per m²) down the inner walls of each box. The boxes were incubated at 25°C (spawn-run) for 18 days. Compost was cased with 1.3 kg of black peat casing soil Terahum (Treset d.o.o., Veliko Gradište, Serbia), amended with limestone (1.4%, Tara, Dobanovci, Serbia) and disinfected with peracetic acid 0.02% (Peral-S 15%, Vetprom, Belgrade, Serbia), 90 ml per m² of casing. Soil was cased in a 50 mm layer and incubated at 22°C for 8 days (case-run). The day of casing was regarded as day one. The next seven days air temeperature was reduced in stages to 17°C. The fungicide prochloraz manganese was applied at the standard product application rate of 0.6 g of active ingredient (a.i.) in $1.8 \, \text{I} \, \text{H}_2\text{O}$ per $1 \, \text{m}^2$ of casing surface on the fourth day after casing. The biofungicide B. subtilis Ch-13 was used in three different doses: 10 ml (1 × 10⁸ CFU), 20 ml (2 × 10⁸ CFU) and 30 ml $(3 \times 10^8 \text{ CFU})$, each volume diluted in 1 l of water and applied per m² of casing surface. The biofungicide B. velezenzis QST713 was also used in three different doses: $0.1 \text{ g} (5.13 \times 10^9 \text{ CFU}), 0.2 \text{ g} (1.03 \times 10^{10} \text{ CFU}),$ and 3 g (1.5×10^{11} CFU), each volume diluted in 1 l of water and applied per m² of casing surface. Application doses of the two biofungicides were chosen based on their recomended doses. Also, it was not possible to apply the same dose of each biofungicide due to their different product formulation. Both biofungicides based on Bacillus spp. were applied on the second day after

casing. Treatments with both biofungicides and the fungicide prochloraz manganese were repeated after the first flush, approximately 22 days after casing. All treatments were applied by spraying corresponding water suspensions on mushroom bed areas prepared for six plots, i.e. a total area of 0.5 m². The trial consisted of two groups, uninoculated plots and those inoculated with *T. aggressivum f. europaeum* T77. Control plots within both groups were sprayed with tap water.

The plots were arranged in a completely random design with six replicates per treatment. The experiment was repeated twice and average values from both repetitions were computed. The fruiting bodies were hand-picked in two successive production flushes: the first from day 14 to 22 after casing, the second from day 23 to 35. The harvested mushrooms were weighed and divided into two groups based on visual observation, i.e. with and without symptoms of green mould disease. The effect of fungicides on mushroom productivity was evaluated by calculating biological efficacy (BE) as the ratio of fresh weight of total fruiting body yield and weight of dry spawned substrate, according to Chrysayi-Tokousbalides et al. (2007), and expressed as %:

BE = (fresh total fruiting body yield/dry spawned substrate mass) × 100

Fungicide effectiveness was calculated by Abbott's formula (Abbott, 1925):

% effectiveness = $[(Ic - It)/Ic] \times 100$

where Ic - disease incidence in inoculated control; It - disease incidence in treated samples (Gea et al., 2010). Disease incidence was recorded as a percentage of fruiting bodies with symptoms compared with those without symptoms.

Statistical analysis

Data were examined using the one-way analysis of variance (ANOVA), including comparison of means by F-test. The test was used to compare the significance

 Table 1. Fungicide products used in the study

Trade name	Active ingredient	Concentration of active ingredient	Manufacturer
Octave [®] WP	Prochloraz manganese	500 mg l ⁻¹	Bayer, Germany
Serenade [®] WP	Bacillus velezensis QST 713	$15.7\% (5.13 \cdot 10^{10} \text{CFU g}^{-1})$	AgraQuest, Canada
Ekstrasol F SC	Bacillus subtilis Ch-13	$1 \times 10^7 \text{ CFU ml}^{-1}$	BioGenesis d.o.o., Serbia

of differences among data on the average biological efficacy and effectiveness of different bio/fungicide treatments against *T. aggressivum* f. *europaeum* T77 in the mushroom growing room. In all analyses, the level of significance was at least P < 0.05 (Sokal & Rohlf, 1995). Statistical data analysis was performed using the software Statistica for Windows 6.0 (Stat Soft Italia, 1997).

RESULTS AND DISCUSSION

Brown spots of a few millimeters were found on *A. bisporus* fruiting bodies in plots inoculated with *T. aggressivum* f. *europaeum* T77 16 days after casing. Larger spots and necrotic lesions of a few centimeters were found three days later. Small emerald green colonies, a few centimeters in diameter, were noted on the casing

surface 28 days after casing. A few days later, colonies became larger as reported before (Milijašević-Marčić et al., 2017).

Comparison of the two microbial biofungicides was very difficult because the commercially available products had different formulations and concentrations of active ingredients, i.e. *B. subtilis* Ch-13 was formulated as a suspension concentrate 1×10^7 CFU ml⁻¹ and *B. velezensis* QST713 was formulated as a wettable powder 5.13×10^{10} CFU g⁻¹ (Table 1). Also, it was not possible to apply these two biofungicides at the same dose because it would differ considerably from their recomended doses. Therefore, the tested doses of *B. subtilis* Ch-13 suspension were 10, 20 and 30 ml per m² of casing soil, to obtain concentrations of 1, 2, and 3×10^8 CFU per m². The first two doses of *B. velezensis* QST713 were 0.1 and 0.2 g per m² to obtain lower concentrations

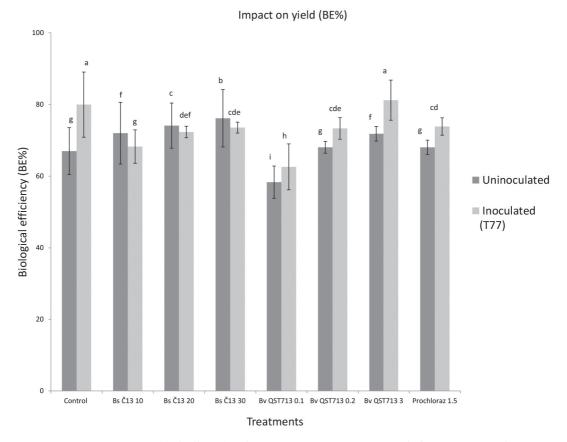


Figure 1. Impact on mushroom yield of different bio/fungicides in *in vivo* assays with *Trichoderma aggressivum* f. *euroapeum* T77 on *Agaricus bisporus*. Data are means of six replicates in two trials \pm SE, standard error of means; BE% - Biological efficiency = ratio of fresh weight of total mushroom yield and weight of dry spawned substrate; data are means of six replicates in two trials \pm SE, SEDs, standard error of differences=32; df, degree of freedom=15; F=102.6; *P*-value=0.001. Values within series marked with same letters are not significantly different according to F test (P<0.05).

 $(5 \times 10^9 \text{ and } 1 \times 10^{10} \text{ CFU per m}^2)$ for comparison with the other biofungicide as the available product based on *B. subtilis* Ch-13 could not be more concentrated. The third tested dose of *B. velezensis* QST713 was 3 g per m² of casing soil as its standard application rate analogous to the concentration of $1.5 \times 10^{11} \text{ CFU per m}^2$.

The impact on yield in all treatment plots is presented in Figure 1. All three B. subtilis Ch-13 treatments showed higher mushroom production in uninoculated plots than in plots inoculated with T. aggressivum. Conversely, inoculated plots treated with prochloraz manganese and B. velezensis QST713 (at all test doses), as well as the untreated inoculated control, produced higher total yields than the corresponding uninoculated plots. This complies with a previous assumption that the pathogen T. aggressivum could enhance the growth and fructification of A. bisporus (Mumpuni et al., 1998). It has been noted that the presence of vegetative mycelium is necessary for intensive sporulation of the pathogen (Mamoun et al., 2000). In addition, Mumpuni et al. (1998) suggested the existence of mutual impact of the pathogen and the host. Particularly, the stimulation of Trichoderma by metabolites produced by A. bisporus and a relatively low level of inhibition of A. bisporus

by the pathogen facilitates colonization of compost by both fungi. However, as compost colonization reaches its maximum, a change in the competitive balance in favor of T. aggressivum f. europaeum results in the inhibition of fruiting body production by A. bisporus and supports devastating green mould epidemics affecting mushroom production. It is interesting that only B. subtilis Ch-13 treatments suppressed that effect of T. aggressivum. Hence, the highest yield was found in both inoculated control plots and B. velezensis QST treatment at 1.5×10^{11} CFU per m² (standard product application rate). It is noteworthy that the next highest mushroom production was found in uninoculated plots treated with *B. subtilis* Ch-13 at 3×10^8 CFU per m² (30 ml per m^2) , thus enhancing mushroom yield 12% compared to uninoculated control, although a much lower concentration was applied in that treatment than in B. velezensis QST713 treatment. Uninoculated plots treated with the biofungicide B. subtilis Ch-13 in all tested doses (1, 2, and 3×10^8 CFU per m²) had higher yields than the uninoculated untreated control. On the other hand, plots treated with B. velezensis QST713 applied at the least dose of 0.1 g per m² (5×10^9 CFU per m²) had a significantly lower yield than the uninoculated

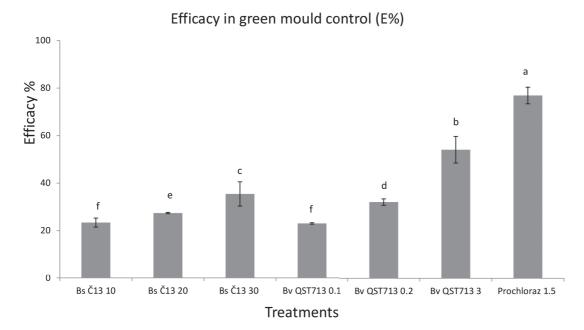


Figure 2. In vivo efficacy of bio/fungicides in the control of Trichoderma aggressivum f. europaeum T77 of Agaricus bisporus; fungicide efficacy % = [(Ic-It)/Ic] × 100, Ic – disease incidence in inoculated control, It – disease incidence in treated plots; data are means of six replicates in two trials ± SE, standard error of means; SEDs, standard error of differences = 14; df, degree of freedom = 6; F = 1186.1; P-value = 0.001. Values within series marked with same letters are not significantly different according to F test (P<0.05).</p>

untreated control. Again, the ability of B. subtilis Ch-13 to enhance the yield of A. bisporus was much better compared to the higher concentration of B. velezensis QST713. Moreover, uninoculated plots treated with all doses of the biofungicide B. subtilis Ch-13 showed higher yields than plots treated with the fungicide prochloraz manganese, while plots treated with B. velezensis QST713 had higher yield than those treated with the chemical fungicide only when the highest dose was applied. All three tested doses of *B. subtilis* Ch-13 and the two highest of B. velezensis QST713 improved mushroom yield to a level corresponding to yield reported in the previous study of Milijašević-Marčić et al. (2017). The lowest dose of *B. velezensis* QST713 (5×10^9 CFU per m²) did not enhance mushroom production, which is consistent with results reported from a study by Kosanović et al. (2013), where B. velezensis QST713 was tested at a dose of 8×10^9 CFU per m². Control plots inoculated with T. aggressivum exhibited higher A. bisporus production than control plots without the pathogen in two trials out of four conducted by Potočnik et al. (2018). In addition, Milijašević-Marčić et al. (2017) reported the highest yield in inoculated plots treated with both QST713 strain and prochloraz manganese in comparison with the matching plots without the pathogen.

The highest efficacy against T. aggressivum f. europaeum was achieved using the fungicide prochloraz manganese (76.87%) (Figure 2). Similar efficacy of prochloraz had also been found in a previous study by Potočnik et al. (2018) (70.4%), where T. aggressivum f. europaeum (10⁴ conidia per m²) was inoculated 10 days after spawning by pouring conidial suspension in holes in the compost. In addition, the results of this study revealed a higher efficacy of prochloraz manganese compared to the similar study of Milijašević-Marčić et al. (2017) (49.4%). These differences may be attributed to different inoculation timing and application rates of the fungicide. In the previous study conducted by Milijašević-Marčić et al. (2017) T. aggressivum was added to the surface of compost one day after spawning, and the application rate of prochloraz manganese was 2.4 g per m², while inoculation in the current investigation was conducted two days after spawned compost was placed into plastic boxes and the standard application rate of the fungicide was 3 g per m². Those findings have demonstrated that infestation of compost with T. aggressivum f. europaeum at spawning is significantly more devastating than later inoculation. The second highest efficacy was noted for treatment with B. velezensis QST713 at standard application rate $(1.5 \times 10^{11} \text{ CFU})$ per m²) (54.08%). It is noteworthy that *B. subtilis*

Ch-13 applied at the concentration of 3×10^8 CFU per m² showed better efficacy (35.45%) than B. velezensis QST713 (32.05%) applied at the higher concentration (10¹⁰ CFU per m²). Also, *B. subtilis* Ch-13 applied at the concentration of 2×10^8 CFU per m² showed a significantly higher efficacy (27.4%) than B. velezensis QST713 at 5×10^9 CFU per m² (23.03%). The results with B. subtilis Ch-13 tested doses suggested that it could be applied at a much lower concentration than B. velezensis QST713 to achieve satisfactory efficacy against T. aggressivum. An explanation of better B. subtilis Ch-13 characteristics, including both mushroom yield promotion and suppression of the pathogen, compared with B. velezensis QST713, could be in faster activation of useful bacteria in suspension concentrate and/or in their own features. Further investigation of different modes of application of B. subtilis Ch-13 is recommended as it showed beneficial features in both promoting A. bisporus production and suppression of growth of the aggressive compost pathogen T. aggressivum, the causal agent of devastating green mould disease.

CONCLUSION

The biofungicide based on B. subtilis Ch-13 showed the highest positive impact on mushroom production. The highest yield in uninoculated plots was found after treatment with B. subtilis Ch-13 at 10⁸ CFU per m², higher than after B. velezensis QST713 treatment with its higher concentration $(1.5 \times 10^{11} \text{ CFU per m}^2)$. The significantly better ability of B. subtilis Ch-13 (applied at 10⁸ CFU per m²) to enhance *A. bisporus* yield was obvious as it exceeded the yield in uninoculated control, compared to the higher concentration of *B. velezensis* QST713 of 5×10^9 CFU per m², which negatively affected the yield. B. subtilis Ch-13 may be assumed to suppress the effect of T. aggressivum on mushroom yield, and significantly enhance mushroom production (12 %). The fungicide prochloraz manganese may be expected to have the highest efficacy in green mould control, and B. velezensis QST713 to follow it with its standard application concentration of 1.5×10^{11} CFU per m². However, it is interesting that *B. subtilis* Ch-13, although applied at lower concentration $(3 \times 10^8 \text{ CFU})$ per m²), demonstrated better efficacy than *B. velezensis* QST713 applied at concentrations of 5×10^9 and 10^{10} CFU per m². Different modes and timing of application of the biofungicide based on B. subtilis Ch-13 should be further investigated to obtain both better yield and efficacy of disease control.

ACKNOWLEDGEMENT

This study received funding from the Ministry of Education and Science of the Republic of Serbia as part of Grant TR 31043.

REFERENCES

- Abbott W.S. (1925) A method of computing the effectiveness of an insecticide. *Journal of Economic Entomology, 18*, 265-268.
- Chebotar, V.K., Makarova, N.M., Shaposhnikov, A.I., & Kravchenko, L.V. (2009). Antifungal and phytostimulating characteristics of *Bacillus subtilis* Ch-13 rhizospheric strain, producer of biopreparations. *Prikladnaya Biokhimya i Mikrobiologiya*, 45(4), 465-469.
- Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famaxadone, tebuconazole and trifloxystrobin between *Verticillium fungicola* and *Agaricus bisporus*. *Crop Protection*, 26, 469-475.
- Doyle, O. (1991). Trichoderma green mould up date. *Irish Mushrooms Review*, *3*, 13-17.
- Gea, F.J., Tello, J., & Navarro, M. (2010). Efficacy and effect on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite *Mycogone perniciosa. Crop Protection*, 29, 1021-1025.
- Grogan, H.M. (2008). Challenges facing mushroom disease control in the 21st century. In Lelley, J.I., Buswell, J.A. (Eds.), *Proceeding of the Sixth International Conference* on Mushroom Biology and Mushroom Products, (pp. 120-127). Bonn, Germany: WSMBMP.
- Grogan, H., & Fletcher J.T. (1993). Control of *Trichoderma* harzianum in compost using fungicides. HDC Contract Report M1a, 1-26.
- Grogan, H.M., & Gaze, R.H. (2000). Fungicide resistance among *Cladobotryum* spp. – causal agents of cobweb disease of the edible mushroom *Agaricus bisporus*. *Mycological Research*, 104, 357-364.
- Grogan, H.M., Keeling, C., & Jukes, A.A. (2000). In vivo response of the mushroom pathogen Verticillium fungicola (dry bubble) to prochloraz-manganese. In Proceedings of Brighton Crop Protection Conference: Pests & Diseases (1, pp. 273-278). Farnham, Surrey, UK: BCPC.
- Grogan, H.M., Noble, R., Gaze, R.H., & Fletcher, J.F. (1996). Contorol of *Trichoderma harzianum* - a weed mould of mushroom cultivation. In *Proceedings of Brighton Crop Protection Confernece: Pests and Diseases, I,* (pp 337-342). Farnham, Surrey, UK: BCPC.

- Kayin, G.B., Öztüfekçi, S., Akin, H.F., Karaata, E.U., Katkat, A.V., & Turan, M.A. (2015). Effect of *Bacillus subtils* Ch-13, nitrogen and phosphorus on yield, protein and gluten content of wheat (*Triticum aestivum* L.). *Journal* of Agricultural Faculty of Uludag University, 29(1), 19-28.
- Kosanović, D., Potočnik, I., Duduk, B., Vukojević, J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S. (2013). *Trichoderma* species on *Agaricus bisporus* farms in Serbia and their biocontrol. *Annals of Applied Biology*, 163, 218-230.
- Kredics, L., García Jimenez, L., Naeimi, S., Czifra, D., Urbán, P., Manczinger, L.... Hatvani, L. (2010). A challenge to mushroom growers: the green mould disease of cultivated champignons. In A. Méndez-Vilas (Ed.), *Current research, technology and education topics in applied microbiology and microbial biotechnology* (1, pp 295-305). Badajoz, Spain: Formatex.
- Mamoun, M.L., Iapicco, R., Savoie, J.-M., & Olivier, J.M. (2000). Green mould disease in France: *Trichoderma harzianum* Th2 and other species causing damages on mushroom farms. In *Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi* (pp 625-632). Maastricht, Netherlands: ISMS.
- Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., & Potočnik, I. (2017). Biological control of green mould on *Agaricus bisporus* by a native *Bacillus subtilis* strain from mushroom compost. *European Journal of Plant Pathology*, 148(3), 509-519.
- Mumpuni, A., Sharma, H.S.S., & Brown, A.E. (1998). Effect of metabolites produced by *Trichoderma harzianum* biotypes and *Agaricus bisporus* on their respective growth radii in culture. *Applied and Environmental Microbiology*, 64(12), 5053-5056.
- Pandin, C., Le Coq, D., Deschamps, J., Védie, R., Rousseau, T., Aymerich, S., & Briandet, R. (2018a). Complete genome sequence of *Bacillus velezensis* QST713: A biocontrol agent that protects *Agaricus bisporus* crops against the green mould disease. *Journal of Biotechnology*, 278, 10-19.
- Pandin, C., Védie, R., Rousseau, T., Le Coq, D., Aymerich, S., & Briandet, R. (2018b). Dynamics of compost microbiota during the cultivation of *Agaricus bisporus* in the presence of *Bacillus velezensis* QST713 as biocontrol agent against *Trichoderma aggressivum. Biological Control*, 127, 39-54.
- Potočnik, I., Todorović, B., Rekanović, E., Luković, J., Paunović, D., & Milijašević-Marčić, S. (2018). Impact of *Bacillus subtilis* QST713 mushroom grain spawn treatment on yield and green mould control. *Pesticides* and Phytomedicine, 33(3-4), 205-212.
- Romaine, C.P., Royse, D.J., & Schlagnhaufer, C. (2005). Superpathogenic *Trichoderma* resistant to Topsin M found in Pennsylvania and Delaware. *Mushroom News*, 53, 6-9.

- Romaine, C.P., Royse, D.J., Wuest, P.J., & Beyer, D.M. (1996). Mushroom green mold: Cause, edaphic factors and control. *Mushroom News*, 44, 20-23.
- Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, L.A., & Petrini, O. (2002). *Trichoderma* species associated with the green mold epidemic of commercially grown *Agaricus bisporus*. *Mycologia*, 94, 146-170.
- Savoie, J.-M., Iapicco, R., & Largeteau-Mamoun, M. (2001). Factors influencing the competitive saprophytic ability of *Trichoderma harzianum* Th2 in mushroom (*Agaricus bisporus*) compost. *Mycological Research*, 105(11), 1348-1356.
- Seaby, D.A. (1996). Investigation of the epidemiology of green mold of mushroom (*Agaricus bisporus*) compost cause by *Trichoderma harzianum. Plant Pathology*, 45, 913-923.
- Sokal, R.R. & Rohlf, F.J. (1995). Biometry: The principles and practice of statistics in biological research (3rd edition). New York, USA: W.H. Freeman and Company.
- Védie, R. & Rousseau, T. (2008). Serenade biofungicide: une innovation mjeure dans les champignonnières françaises pour lutter contre *Trichoderma aggressivum*, agent de la moisissure verte du compost. *La Lettre du CTC*, *21*, 1-2.

Uticaj treatiranja pokrivke biofungicidom na bazi *Bacillus subtilis* Ch-13 na suzbijanje zelene plesni i prinos šampinjona

REZIME

Biofungicid na bazi *Bacillus subtilis* Ch-13 odabran je za procenu uticaja na prinos šampinjona i efikasnost u suzbijanju *Trichoderma aggressivum* f. *europaeum* T77 iz Srbije u poređenju sa sličnim mikrobiološkim fungicidom na bazi *Bacillus velezensis* QST713 i fungicidom prohloraz manganom. Biofungicid *B. velezensis* QST713 je registrovan u šampinjonima i drugim usevima u mnogim državama, ali nije dostupan na tržištu Sribje. Testirani *B. subtilis* Ch-13 je povećao prinos šampinjona 12% u poređenju sa neinokulisanom kontrolom i u značajno većoj meri od *B. velezensis* QST713 primenjenog u većim koncentracijama. U određivanju efikasnosti biofungicida u suzbijanju kompostnog patogena *T. aggressivum* f. *europaeum*, *B. subtilis* Ch-13 primenjenog u većim koncentracijama (5 × 10⁹ i 1 × 10¹⁰ CFU po m²). Biofungicid na bazi *B. subtilis* Ch-13 bi trebalo dalje testirati i proučiti različite načine njegove primene da bi se uspostavila veća efikasnost u suzbijanju patogena jer je pokazao značajne osobine u pospešivanju prinosa *A. bisporus* i zaštiti od agresivnog patogena iz komposta *T. aggressivum*, prouzrokovača zelene plesni šampinjona.

Ključne reči: šampinjon; Trichoderma aggressivum; Bacillus subtilis; biofungicidi