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Abstract. The aim of this study was to examine the possibility of tensile-test application at 

three strain rates (0.01/s and 0.001/s and 0.001/s) on suitable samples of grilled pork meat 

(musculus psoas major). Differences in the stress-strain curves were observed between the two 

directions of the muscle fibres (i.e. strain parallel to and transverse to the fibres). However, the 

strain rate of 0.001/s resulted in the most linear stress-strain curves for strain in both muscle 

fibre directions. Also, results confirmed that specimens tested transversally to the muscle fibre 

direction required less stress to fracture. We also concluded that specimens stretch more in the 

direction transverse to the muscle fibre direction for strain rates of 0.01/s and 0.001/s. Gaining 

knowledge from different methods of empirical mechanical testing of meat should 

enhance the possibility of forming material constitutive laws to be used as input to finite 

element simulations of industrial processes of meat such as cutting or of human oral 

processing. 

1.  Introduction 

Oral processing from the moment of the first bite to the moment of swallowing includes mechanical 

changes of food structure during mastication, chemical changes related to oral enzymatic digestion, and 

temperature-associated transitions such as melting [1, 2]. Starting from the first bite to the moment of 

swallowing, food changes are caused by rhythmic motor activity of the jaw controlled by the central 

nervous system, and transportation of the food pile in the oral cavity by the tongue movements [1, 3]. 

The pathway of nonliquid food structure changes during mastication includes mechanical structure 

failure, further grinding of food particles, saliva incorporation, particle agglomeration, and bolus 

formation [4, 5]. 

The mechanical characteristics of food determine its behaviour as a material during oral processing, 

which means they determine such parameters as particle size distribution, eating rate, number of chews 

per gram, etc. Besides that, palatability of the food can affect food digestion, absorption of nutrients 

and the occurrence of disorders such as obesity or dyspepsia [4, 6]. Some authors have confirmed that 

denture wearers do not have the same patterns of meat mastication compared to fully dentate masticators 

[7]. 

 Although the mechanical characteristics of food can be of great importance, there are not many 

studies that deal with the mechanical testing of meat. One of the reasons for this is that meat has a 

complex structure and so is considered as a composite and anisotropic material [8], which means that, 

for mechanical testing, it is hard to obtain appropriate samples consisting just of muscle tissue [9]. Also, 

we must bear in mind that other materials such as connective and adipose tissues are present in the meat 
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as well. An additional factor that can affect the results of mechanical testing is the direction of the 

muscle fibres [8, 9]. Besides that, other factors such as: breed, feeding regime, sex, age, animal 

treatment before slaughter and carcass management can have an influence on meat toughness [8]. 

 In the case of meat, Honikel [10] suggested the tensile test, Warner-Bratzler shear test and 

penetrometer measurements as appropriate methods of meat tenderness evaluation. Lepetit and Culioli 

[9] pointed out the suitability of the following mechanical methods for meat toughness examinations: 

Warner-Bratzler test, compression test, tensile test, penetrometry, multi-blade shearing, and bite test.  

 One of the latest trends in food science and engineering is mechanical characterization and modelling 

of food materials [11, 12]. Data obtained from these types of mechanical tests are needed for the 

definition of the material constitutive laws and can be inputs for further modelling of the material. In 

this study, the possibilities for mechanical testing of grilled pork meat (musculus psoas major) were 

investigated in terms of tensile tests. The working hypothesis was that results differ depending on the 

direction of muscle fibres.  

2.  Materials and methods 
Pork meat used for this study (musculus psoas major) was commercially purchased at a London market. 

Preliminary tests were conducted on raw meat. Even though Honikel [10] considered it possible to 

conduct a tensile test on raw meat, our preliminary trials for this study showed it is hard to obtain 

uniform geometry and dimensions of tensile test specimens of raw meat. Therefore, in order to produce 

samples with adequate geometry, the meat was grilled. Figure 1 shows the dumbbell shape of the 

specimens for uniaxial tension, denoting dimensions. Dimensions were chosen according to 

recommendations provided in the literature [10]. 

 

 
Figure 1. Dumbbell-shaped specimens for uniaxial tension test, parallel to the muscle fibre direction 

 

Meat (3 mm thick slices) was grilled then cut with a razor blade in order to gain specimens as shown 

in Figure 1. Specimens were cut from the grilled meat with a metal cutting template parallel to the 

direction of muscle fibres and transverse to the direction of muscle fibres. Hence, two types of 

specimens were obtained for the tensile tests. 

Before tensile testing, the dimensions of all grilled meat specimens were measured with a digital 

Vernier caliper of 0.1 mm accuracy. Specimen measurements were as follows: height: 19.00±1.50; 

width: 4.91±0.74; thickness 3.49±0.77. They were labelled with a marker at three points along the gauge 

length in order to track uniformity of specimen deformation during the test. For this purpose, all tests 

were video recorded (Figure 2).  
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Figure 2. Specimen deformation during the tensile test, parallel to the muscle fibre direction, 0.1/s 

constant strain rate; (a) specimen before the beginning of the test; (b) tension of the specimen; (c) first 

crack of the specimen; (d) specimen material failure 

 

Tensile tests were conducted on an Instron machine 2530. All tests were performed with the 10 kN 

load cell. The strain rate dependency was assessed via monotonic tests at three constant true strain rates: 

0.001/s, 0.01/s, and 0.1/s. For each of the two different muscle fibre directions and each of three strain 

rates, five replicates were conducted. All data are shown below as mean values, using standard deviation 

as error bars. The true (Cauchy) stress, σ, versus true (Hencky) strain, ε, were calculated using the 

following equations: 
 (a)                  σ = F/Ai 

(b)           ε = ln(Hi/Ho) 
(1) 

where Ai is the instantaneous cross-sectional area of the specimen, F is the corresponding force 

applied and Ho is an original reference dimension of the specimen (gauge length in tension) together 

with its deformed value, Hi. 

Tests were performed in a laboratory maintained at 23°C and 50% relative humidity. 
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3.  Results and discussion  
Tensile tests resulted in six stress-strain diagrams, three for each of the muscle fibre directions. For both 

of the directions, three tensile tests were conducted at 0.1/s, 0.01/s, and 0.001/s constant strain rate 

(Figure 3). Even though video analysis of the testing was employed, with the aim of excluding 

unsatisfactory data from further data analysis, the diagrams show significant variability in the stress-

strain data. Still, differences in the stress-strain curves can be noted between the two directions of the 

muscle fibres.  

 

 

 

 
   

 

 

 
   

 

 

 
 

Figure 3. Stress-strain curves; (a) monotonic tension, 0.1/s strain rate, parallel to the direction of the 

muscle fibres; (b) monotonic tension, 0.01/s strain rate, parallel to the direction of the muscle fibres; 

(c) monotonic tension, 0.001/s strain rate, parallel to the direction of the muscle fibres; (d) monotonic 

tension, 0.1/s strain rate, transverse to the direction of the muscle fibres; (e) monotonic tension, 0.01/s 
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strain rate, transverse to the direction of the muscle fibres; (f) monotonic tension, 0.001/s strain rate, 

transverse to the direction of the muscle fibres 

 

Comparing the diagrams, it appears the strain rate of 0.001/s resulted in the most linear stress-strain 

curves for both muscle fibre directions. From Figure 3, it can be concluded that specimens tested 

transversally to the muscle fibre direction required less stress to fracture. On the other hand, by 

considering Figures 3b, 3c, 3e and 3f, for the strain rates of 0.01/s and 0.001/s, it appears the specimens 

of grilled meat stretched more in the case of the transverse muscle fibre direction. 

Grilling the meat improved the shape and uniformity of the specimens’ dimensions, but further 

enhancements are still needed. Because of the material cracking between the muscle fibres when the 

specimens were cut from the grilled meat, future testing should reconsider the replacement of metal 

cutting templates with a suitable manual press. Also, the drying of the specimens during the tests should 

be considered. 

3.1. Future modelling of the results 

There are two basic approaches in modelling meat as a material. The first is reproducing food separation 

patterns under strain tests, which could resemble boundary conditions applied when modelling the 

chewing of meat using finite element analysis [11, 12]. This should allow information on the mechanical 

behaviour of meat to be obtained. Such information could enhance better our understanding of the 

structural changes of meat during oral processing. 

The second approach is introducing mechanical characteristics of meat as oral processing parameters 

in order to model specific quality parameters, using quality function deployment [13], or quality index 

models [14]. This type of modelling can enable quality improvement aimed at satisfying the consumers 

as well as translating the consumer’s oral processing demands into meat quality targets. 

Recent research conducted by Dekkers et al. [15] deals with structuring of meat analogues. It can be 

assumed that better understanding of meat’s mechanical properties would improve the structure of meat 

analogues. Some recent studies are introducing novel technologies in the area of food science and 

engineering, such as 3D food printing. Most of these studies are investigating the applicability for 3D 

printing of plant origin materials such as potato starch [16], pectin [17] or xanthan gum [18]. Gaining 

knowledge of meat mechanics and related structure characteristics should lead to future progress in the 

design of foods through 3D food printing, which is a promising area in the field of food engineering. 

4.  Conclusion 

Literature findings point to the possible difficulties regarding mechanical testing of meat. Although 

some authors maintain it should be possible to conduct mechanical tests on raw meat, preliminary studies 

for the present research revealed this type of testing as inappropriate. On the other hand, limited 

scientific findings analysed mechanical testing of grilled meat. 

With the aim of examining the uniaxial tension of grilled pork meat, monotonic tensile tests with 

constant strain rates were performed for two different muscle fibre directions and three different strain 

rates. This research revealed differences in the stress-strain curves between the two directions of the 

muscle fibres. The strain rate of 0.001/s resulted in the most linear stress-strain curves for both muscle 

fibre directions examined. Also, this study showed that the strain testing transversally to the muscle fibre 

direction required less stress for the muscle fibres to fracture.  

This study highlights the need for understanding various breakdown mechanisms during chewing of 

meat as one of the most complex food materials. Modelling should try to utilize food disintegration and 

bolus breakdown and its relation with the original mechanical and physical properties of meat. Further 

research could cover various types of meat and chemical changes that occur due to saliva incorporation 

or enzymatic gastric conditions. Meat structure and related mechanical characteristics are required as 

inputs to novel food engineering methods such as 3D printing of food. 
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