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Abstract 

Barium hexaferrite ceramics were prepared using mechanically activated mixtures of iron and 

barium titanate. The 60:40 mass% Fe:BaTiO3 powder mixtures were mechanically activated 

for different times (100-240 min) and sintered at 1100 and 1200 
o
C in order to determine the 

influence of mechanical activation of the precursor on the magnetic and dielectric properties 

of the resulting barium hexaferrite ceramics. The final product contained 84-89 mass% of 

Ba2Fe22.46O38Ti1.54 phase, with higher content corresponding to longer mechanical activation 

of the precursor. XRD and Raman measurements indicated that the remainder of the sample 

consists of leftover BaTiO3 and hematite, which was formed by the oxidation of iron during 

mechanical activation and sintering in air. Magnetic properties of samples sintered at 1200 
o
C 

are superior to those sintered at 1100 
o
C, which can be attributed to higher Ba2Fe22.46O38Ti1.54 

phase content. The position of the Curie temperature in 350-420 
o
C temperature region is 

consistent with 0.8:1 ratio of Ti to Ba. Maximum magnetization was observed for samples 

activated for 120 min. Dielectric properties of samples sintered at 1200 
o
C showed a 

dependence on frequency, with a significant drop in relative permittivity with an increase in 
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frequency in the low-frequency region, and relatively constant values of relative permittivity 

in the high-frequency region. The tangent loss showed a decrease with increase in frequency, 

where peaks corresponding to the resonance of the electron hopping frequency with the 

external field were observed in the samples corresponding to the longer mechanical 

activation. Dielectric properties showed relatively small changes for samples activated longer 

than 150 min. 
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1. Introduction 

 

Multiferroics are a class of materials that exhibit more than one ferroic polarization 

[1-2]. Primarily, the term ‘ferroic polarization’ indicates spontaneous magnetization, 

spontaneous electric polarization or spontaneous strain, which is realized by the application 

of external magnetic fields, electric fields or mechanical stress below the characteristic 

temperature (i.e., Curie temperature) [3]. Multiferroic materials exhibiting coexistence of at 

least two ferroic orderings (ferroelectric, ferromagnetic or ferroelastic) have recently 

stimulated ever-increasing research interest for their potential technological applications in 

multifunctional devices, such as memories and sensors [4-6]. However, the natural 

multiferroic single-phase compounds are rare, and none of the existing single-phase materials 

combines large magnetization and polarization at room temperature [7-8].  

BaTiO3 has been the most extensively investigated lead-free ferroelectric material [9], 

it has been widely used in practical applications, and allows for easy incorporation of 3d and 

4d transition metals as a substitute for the titanium atom to produce ferromagnetism [10]. 

Importantly, Fe (110) and BaTiO3 (100) planes are a relatively close match in terms of lattice 

constants (a mismatch is only about 1.4%), which allows layer-by-layer epitaxial growth of 

Fe/BaTiO3 multi-layers with no misfit dislocations. Mechanical activation is a well-

established preparation route for various titanate based based electroceramics [11-17]. At 

higher Fe:Ba ratios, barium hexaferrite BaFe12O19, an M type hexagonal ferrite, is usually 

formed, which, like other ferrite materials, has been used as a permanent magnet for 
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electronic and microwave applications [18-22], due to its large uniaxial magnetic anisotropy 

[23].  

A recent study has shown that co-doping of BaTiO3 with Mn and Fe leads to 

depression of the phase transition temperature and improved magnetization results, producing 

room temperature ferromagnetic and ferroelectric phase [24, 25]. Substitution of up to 10% 

Ti with Fe atoms, in BaTiO3, introduces ferroelectric properties into BaTi1−xFexO3, with 

optimal magnetodielectric coefficient at x = 2.5% [26]. A study of grain size effects in 

BaTi0.5Fe0.5O3 materials produced by mechanochemical synthesis has shown a strong 

correlation between microstructural features and ferromagnetic and ferroelectric properties. 

While the relatively weak ferromagnetic effect was obtained through Fe-doping [27], 

ferroelectric properties declined precipitously with an increase in Fe-content, largely due to 

large leakage current caused by increased concentration of oxygen vacancies [28]. A study of 

dielectric and magnetic properties of mechanochemically synthesized barium hexaferrite has 

shown that magnetic properties improved with increased milling time, while dielectric 

permittivity showed little change [29]. Epitaxial barium hexaferrite films deposited on 6H-

SiC exhibited large remanence ratio along in-plane axis and low along the out-of-plane axis, 

showing promise for microwave application [30].  

In this study, mechanical activation of Fe/BaTiO3 (FBT) powder mixture (with a 

powder mixture of 60 mass% of iron (Fe) and 40 mass% of barium titanate (BaTiO3)) was 

characterized with a particular focus on the dependence of its magnetic properties vs. milling 

time and annealing temperature. 

 

2. Experimental procedure 

 

The initial powder was the mechanical mixture of 60 mass% of Fe (Aldrich, St. 

Louis, MO, p.a. 99.99%) and 40 mass% of BaTiO3 (Aldrich, St. Louis, MO, p.a. 99%). The 

powder mixture was activated in a planetary ball mill (Retsch PM 400) in the air for 100, 

120, 150, 180, 210 and 240 min at 300 rev/min. Initial mixtures were ground in a zirconium-

oxide container (volume 500 cm
3
), together with balls of a 10 mm diameter (the ratio of 

powder and the ball was 1:20). The powder mixtures were dried and calcined at a temperature 

of 700 
o
C, for 2 h inside a chamber furnace, after milling. 

The samples of the activated after which calcined FBT powders were pressed at 5 

t/cm
2
 (500 MPa). They were sintered in air in a laboratory chamber furnace (Electron) whose 

maximum temperature is 1600 
o
C. The samples were placed into the furnace and sintered at a 
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temperature of 1200 
o
C for 2 h. The heating rate was 10 

o
C/min, and when the furnace 

reached the temperature of 1200 
o
C, the pressed samples were sintered isothermally for 2 h.  

The X-ray powder diffraction patterns were obtained using a Rigaku Ultima IV X-ray 

diffraction (XRD) instrument in thin film geometry with grazing incidence angle of 0.5°, 

using Ni-filtered CuKα radiation (λ = 1.54178 Å). Diffraction data were acquired over the 

scattering angle 2θ from 10° to 70° with a step of 0.05° and acquisition rate of 2°/min and 

obtained data were analyzed with PDXL 2 software. Rietveld analysis was performed with 

full refinement using GSAS II software package [31]. Obtained values of Rwp (weighted 

residual factor) varied from 5.6% to 11.3% and the Goodness of Fit indicator was GoF~1. 

The texture of individual crystalline phases, as a measure of the preferential orientation of 

any particular crystalline plane with respect to the other planes of the respective crystal 

phase, was determined using the following equation [32]: 

Tx = I/((1/n)∑Ii)   (1) 

where Tx is texture coefficient, I is the intensity of an individual reflection belonging to a 

particular crystal plane normalized against the intensity of that same reflection in a reference 

powder sample, and n is the total number of reflections of individual crystalline phase 

considered. 

The morphology and microstructure of sintered FBT were analyzed using a Scanning 

Electron Microscope (SEM, JSM-6390 LV JEOL, 30kV) coupled with EDS (Oxford 

Instruments X-Max
N
).  

The non-polarized light scattering spectra of the powder compact samples, compacted 

at 5 t/cm
2
 (500 MPa) on a hydraulic press, were obtained at room temperature using the 633 

nm line of a He-Ne laser, with a power supply of 1 mW at the sintered FBT-S samples. 

Raman scattering was recorded using a LabRam HR Evolution spectrometer (Horiba Jobin 

Yvon), in a backscattering geometry. The scanning range was 100 – 1100 cm
-1

, with an 

increment step of 0.2 cm
-1

. 

Thermomagnetic measurements in air were conducted by Faraday method, which 

presumes the influence of the non-homogenous magnetic field on the magnetic sample during 

heating [33]. The measurement sensitivity of the magnetic force was 10
-7

 N in the applied 

magnetic field with an intensity of Happ = 16 kA/m. 

The relative dielectric permittivity εr(ω) of BaFe12-xTixO19 was measured on disc 

samples using low-frequency impedance analyzer HP 4119A and high-frequency impedance 

analyzer HP 4191A. First, the real and the imaginary part of impedance Z (ω) of disc samples 

were measured using measuring mode of parallel RC circuit. The obtained data were then 
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used for calculating parallel capacitance Cp(ω) and parallel resistance Rp(ω). In the second 

step, the relative dielectric permittivity εr(ω)= εr’(ω)+jεr”(ω) was calculated using Cp and Rp. 

 

3. Results and discussion 

 

A powder mixture of Fe and BaTiO3 was mechanically activated for different periods 

of time and then sintered at 1100 and 1200 
o
C. Pre-sintered samples contained a mixture of 

BaTiO3, Fe and different iron oxide phases, which combined to form Ba2Fe22.46O38Ti1.54 

phase during sintering. Mechanical activation of pre-sintered samples of less than 100 min 

had not produced any significant effect on the powder microstructure [34] and, therefore, 

those samples were not investigated in detail. XRD patterns of a sintered mechanically 

activated powder mixture of Fe and BaTiO3 are shown in Figure 1. Rietveld analysis (Table 1 

and Supplement) indicates that the dominant crystalline phase in all of these samples is 

Ba2Fe22.46O38Ti1.54 with 84-89 mass%. The secondary crystalline phase is leftover BaTiO3, 

which accounts for 11-16 mass%. The formation of Ba2Fe22.46O38Ti1.54 phase can be 

correlated with mechanical activation in the air, which converts Fe powder to Fe3O4 and 

Fe2O3, allowing the formation of hexaferrite Ba2Fe22.46O38Ti1.54 phase during sintering. It 

could be expected that there is also some amount of iron oxides left in the sample, however, it 

appears these phases are below the XRD detection threshold. The non-activated sample does 

not show any significant difference compared to the sample activated for 100 min, therefore, 

it was not investigated further in particular detail. Mechanical activation of the precursors has 

an effect on microstructural parameters of the crystalline lattice of Ba2Fe22.46O38Ti1.54 phase 

after sintering, resulting, in general, in expansion along a- and b-axes and contraction along 

c-axis, an increase in lattice volume and a decrease in the average crystallite size. Overall, the 

average crystallite size is considerably larger than in the precursor powders. The lattice 

volume expansion is relatively small at less than 1% in all of the samples. In addition, the 

contribution of Ba2Fe22.46O38Ti1.54 phase increases with increased time of mechanical 

activation, which can be expected and correlated with increased free surface available for 

chemical reaction due to smaller crystallite size and an increased concentration of surface 

defects on prolonged mechanical activation [34] allowing for a more effective conversion of 

precursors. Samples sintered after longer mechanical activation also exhibit higher values of 

lattice strain, suggesting a higher concentration of lattice defects. Texture analysis (Figure 1) 

shows that the samples generally exhibit similar orientation and that the dominant planes in 
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all of the samples are (114) and (107), which have a higher iron content. Planes with higher 

barium content, like (110) and (317) are less represented.  

Scanning electron microscope study of sintered samples mechanically activated 

before sintering at 1200 
o
C shows significant changes in morphology caused by mechanical 

activation before sintering (Figure 2). Sample activated for 100 minutes exhibits granular 

structure with grains of a few tens of nanometers to a few micrometers in diameter and is 

generally similar to the sample that was not mechanically activated. Further pre-sintering 

mechanical activation of 150 min causes the sintered grains to be much more consolidated 

and indicates that the sintering process has become more efficient as a result of mechanical 

activation. This is confirmed by further mechanical activation for 210 min, where the sample 

is even more compact and it is hard to identify individual grains. EDS analysis (Figure 3) 

shows that the sample that was mechanically activated for 210 minutes contains more oxygen 

than the samples activated for shorter periods of time, which is consistent with mechanical 

activation in the air, leading to the creation of defects and larger specific surface area in the 

pre-sintered sample. In addition, chemical mapping of the sample surface shows that pre-

sintering mechanical activation leads to better phase separation, as shown in Figure 4, where 

Fe-rich and Ti-rich regions show an increasing degree of separation. This can be correlated 

with results of XRD phase composition, where the amount of Ba2Fe22.46O38Ti1.54 phase 

increased with increase in mechanical activation time. This suggests that the reduction in 

grain size by mechanical activation improves the homogeneity of the pre-sintered mixture 

and allows more efficient chemical reaction during sintering, providing both higher yield of 

Ba2Fe22.46O38Ti1.54 phase and a more compact sample.  

 Raman spectra in Figure 5 show that in all mechanically activated samples, the 

dominant signal comes from a barium hexaferrite phase, which can be attributed to 

Ba2Fe22.46O38Ti1.54 crystalline phase (marked with B in Figure 5 [35]). Hematite and BaTiO3 

are observed in relatively small amounts, with higher content in the samples activated for 

shorter times, which is consistent with XRD measurements. In the sample activated for 100 

min, two strong hematite lines appear (224 and 293 cm
−1

), with another line present as a 

shoulder around 493 cm
−1

 [36, 37]. In the same sample, BaTiO3 manifests as a weak peak 

corresponding to superimposed E(3TO), E(2LO) and B1(1TO+1LO) modes, characteristic of 

tetragonal BaTiO3. At longer activation times, distinct peaks corresponding to hematite and 

BaTiO3 are not observed, but a weak peak corresponding to superimposed A1(2TO) BaTiO3 

mode and the strongest hematite mode Eg around 292 cm
−1

. The presence of the 

superimposed E(3TO), E(2LO) and B1(1TO+1LO) modes of tetragonal BaTiO3 are observed 
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as a weak signal near barium hexaferrite peak at ~339 cm
−1

. The peak around 525 cm
−1

 could 

also be attributed to the contribution of E(4TO) and A1(3TO) modes of BaTiO3, in addition to 

barium hexaferrite contribution. This behavior can be explained by the existence of non-

reacted iron-oxide in the final product: phase analysis indicates 84-89% of Ba2Fe22.46O38Ti1.54 

crystalline phase, with an increase in content with increase in the duration of mechanical 

activation. This is close to the theoretical maximum content of Ba2Fe22.46O38Ti1.54 phase for a 

fully reacted 60-40 mass% mixture of Fe and BaTiO3 of around 93%, leaving estimated less 

than 2 mass% iron unreacted in the sample for the formation of iron-oxides. While the 

content of these iron oxides is most likely too small to detect in the XRD, it can easily 

accumulate locally on the surface of Ba2Fe22.46O38Ti1.54 grains and provide strong enough 

Raman signal to be observed in some of the samples.  

Barium hexaferrite phases exhibit high electrical resistivity and a low magnetic loss, 

coupled with high magnetic anisotropy, high saturation magnetization and a high temperature 

of ferrimagnetic transition [38]. In pressed non-sintered samples, magnetization reaches a 

maximum value for mechanical activation for 100 min, due to the formation of magnetic iron 

oxides during mechanical activation in the air, in particular, Fe3O4 (Figure 6). The variations 

in values of magnetization for longer times of mechanical activation can be attributed to 

content variations of Fe2O3 and Fe3O4 in the sample. Samples sintered at 1100 and 1200
o
C 

for 2h exhibit significantly lower values of magnetization, which originates from the 

formation of Ba2Fe22.46O38Ti1.54, which is identified as the dominant crystalline phase in the 

XRD and is not as good magnetic material as magnetite. Higher values of magnetization after 

sintering at 1200
o
C, compared to sintering at 1100

o
C, correspond to higher Ba2Fe22.46O38Ti1.54 

content in these samples. 

Figure 7 shows the temperature dependence of magnetization for a sample activated 

for 120 minutes and sintered at 1200 
o
C for 2 h. Magnetization drops about 20% at a 

temperature of around 100 
o
C, which corresponds to BaTiO3 phase transformation and 

transition from ferroelectric tetragonal to paraelectric cubic phase. The sample exhibits Curie 

temperature in 350-420 
o
C temperature region, as indicated by the loss of magnetization. Pure 

BaFe12O19 exhibits a Curie temperature in 450-500 
o
C region, and values of 350-420 

o
C are 

roughly consistent with the presence of Ti at 0.8:1 ratio to Ba [39], which is consistent with 

the presence of Ba2Fe22.46O38Ti1.54 phase. When this sample was cooled outside of the 

magnetic field and then heated again, there was no significant change in magnetic properties 

and their temperature dependence. However, when the sample was cooled in a magnetic field 

with H = 16 kA/m, magnetization at temperatures close to room temperature was 3.5-4 times 
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higher than in the original sample. On the other side, this sample exhibited continuous loss of 

magnetization on heating, while Curie temperature remained the same. This increase in 

magnetization at room temperature was permanent and did not decay over time when the 

sample was removed from the magnetic field. 

Dependence of dielectric properties on mechanical activation shows that mechanically 

activated samples exhibit a significant increase in both real and imaginary part of the 

dielectric permittivity (Figure 8). Dielectric permittivity decreases relatively sharply with 

increase in frequency, which can be explained by the existence of interfacial polarization 

based on the Maxwell-Wagner two-layer model [40, 41]. Since the ferrite grains are good 

conductors and grain boundaries are fairly poor conductors, the high values of the dielectric 

permittivity at low frequencies can be attributed to space charge polarization produced at the 

grain boundaries. At higher frequencies, electron hopping between Fe
2+

 and Fe
3+

 ions occurs 

at a lower frequency than the frequency of the external field, causing dispersion [42]. The 

real part of the dielectric permittivity remains relatively constant at higher frequencies, which 

is consistent with previous studies [29]. The high values of dielectric permittivity are 

consistent with those obtained for Mg and Ti-doped BaFe12O19 [39], where highest values 

were obtained for a system with 1:1:1 ratio of Ba:Ti:Mg. 

Figure 9 shows that all of the systems exhibit relatively high values of tangent loss, 

with mechanically activated systems generally exhibiting some what higher values. Dielectric 

loss occurs when the polarization of the material lags behind the applied electric field and is 

typically caused by impurities and defects in the material. The energy required for electron 

exchange between Fe
2+

 and Fe
3+

 ions decreases with increase in frequency, leading to a 

general decrease of tangent loss with an increase in the frequency of the applied electric field. 

The peaks in the tangent loss dependence on frequency occur when the electron hopping 

frequency between Fe
2+

 and Fe
3+

 ions matches the frequency of the external field, and this 

effect appears to be the dominant factor in the amplitude of the tangent loss [39]. 

 

4. Conclusion 

 

BaTiO3 and iron powder mixture with 40:60 mass composition (14:86 atomic ratio of Ba:Fe) 

were mechanically activated and then sintered at 1100 and 1200 
o
C. The resulting samples 

contained mostly hexaferrite Ba2Fe22.46O38Ti1.54 phase and leftover BaTiO3 and hematite, 

while the presence of leftover iron oxides could not be determined using XRD, although 

magnetic and Raman measurements indicated they were present in the sample. Samples 
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sintered at 1200 
o
C exhibited better magnetic properties than those sintered at 1100 

o
C, due to 

the higher content of hexaferrite phase. Maximum value of magnetization was observed for 

samples activated for 120 min. Dielectric properties showed dependence on frequency, where 

there was a significant drop in dielectric permittivity with an increase in frequency at low 

frequencies, while the real part of the dielectric permittivity remained relatively constant at 

high frequencies. The tangent loss showed a general decrease with increase in frequency, 

with peaks corresponding to the resonance of the electron hopping frequency with the 

external field occurring in samples with higher mechanical activation times. Dielectric 

properties show relatively little change for activation longer than 150 min. High observed 

values of dielectric permittivity are consistent with previously published work for similar 

systems. 
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Fig. 1. XRD patterns of samples of sintered mechanically activated powders (left); texture 

analysis (right). 

Fig. 2. SEM images of samples mechanically activated for 100, 150 and 210 min. 

Fig. 3. EDS spectra of samples mechanically activated for 100, 150 and 210 min. 

Fig. 4. Chemical mapping of samples mechanically activated for 100, 150 and 210 min. 

Fig. 5. Raman spectra of sintered mechanically activated Fe-BaTiO3 powders (B – barium 

hexaferrite; H – hematite; BT – BaTiO3). 

Fig. 6. Dependence of magnetization on mechanical activation time in non-sintered samples 

(left) and samples sintered at 1100 and 1200
o
C (right). 

Fig. 7. Temperature dependence of magnetization of a sample activated for 120 min and 

sintered at 1200
o
C for 2 h during two successive heating cycles (H = 16 kA/m, heating rate 

20
o
C/min) when cooling was conducted in a magnetic field. 

Fig. 8. Real (left) and imaginary (right) part of the dielectric permittivity of mechanically 

activated samples sintered at 1200
o
C for 2 h. 

Fig. 9. Tangent loss of mechanically activated samples sintered at 1200
o
C for 2 h. 
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Table 1. Results of Rietveld analysis (graphs included in the Supplement). 

Sample a c Size 

(nm) 

Strain 

(%) 

O38Ti1.26Fe22.74Ba2 

(%mass) 

BaTiO3 

(mass%) 

100 5.88625 23.28505 2275 2.1 84.2 15.8 

120 5.90449 23.21012 77 5.5 84.9 15.1 

150 5.91424 23.22085 80 1.5 85.6 14.4 

180 5.91213 23.20773 69 4.0 86.4 13.6 

210 5.88672 23.23385 410 2.8 87.3 12.7 

240 5.91802 23.21369 68 3.9 88.1 11.9 

 

 

 

 




