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Abstract
The results presented in this study include the prediction of the antifungal activity of 24 oxazolo derivatives based 
on their topological and electrostatic molecular descriptors, derived from the 2D molecular structures. The artificial 
neural network (ANN) method was applied as a regression tool. The input data for ANN modeling were selected by 
stepwise selection (SS) procedure. The ANN modeling resulted in three networks with the outstanding statistical char-
acteristics. High predictivity of the established networks was confirmed by comparisons of the predicted and experi-
mental data and by the residuals analysis. The obtained results indicate the usefulness of the formed ANNs in precise 
prediction of minimum inhibitory concentrations of the analyzed compounds towards Candida albicans. The Sum of 
Ranking Differences (SRD) method was used in this study to reveal possible grouping of the compounds in the space 
of the variables used in ANN modeling. The obtained results can be considered to be a contribution to development of 
new antifungal drugs structurally based on oxazole core, particularly nowadays when there is a lack of highly efficient 
antimycotics.

Keywords: Artificial neural networks; Antifungal activity; Molecular topology; Electrostatic descriptors; 
QSAR; Sum of Ranking Differences

1. Introduction
Quantitative structure-activity relationship (QSAR) 

approach is an attempt to remove the trial-and-error ele-
ment from drug design by using high-quality mathemati-
cal relationships which relate measurable physicochemical 
parameter(s) as independent variable(s) and a biological 
response (a dependent variable).1 These variables have 
been correlated in many QSAR studies applying various 
chemometric regression methods, as linear regression 
(LR), multiple linear regression (MLR), polynomial re-
gression (PR), artificial neural networks (ANN), partial 
least squares regression (PLS), principal component re-
gression (PCR), etc.2–8 Any high-quality model obtained 

by aforementioned chemometric techniques may be used 
by the chemist in order to facilitate the synthesis of more 
effective drugs. A high-quality QSAR model must be based 
on reasonable number of tested compounds, characterized 
by good values of statistical parameters, defined for partic-
ular application domain and suitably validated by internal 
and external validation approaches. Using these QSAR 
models, it is possible to precisely calculate the theoretical 
activity of compounds prior to their synthesis, and thus 
decrease financial expenses and time needed for the exper-
imental work.

The selection of appropriate regression method de-
pends on nature of the variables. ANN method is suitable 
for correlation analysis when there is a complex relation-
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ship between the variables, as in the case of biological sys-
tems. The complex relationships between biological activ-
ity and molecular characteristics are not unusual, since 
there are many factors which have certain influence on 
biological effect of a compound, such as lipophilicity, dis-
sociation, molecular weight, presence of polar/non-polar 
functional groups, conformation, etc. In the present pa-
per, the electrostatic and topological characteristics of 
benzoxazoles and oxazolo[4,5-b]pyridines were used as 
predictors of their antifungal activity against Candida al-
bicans. Topological descriptors of a compound can be cal-
culated based on molecular graphs that are hydrogen-sup-
pressed. In these graphs the bonds are presented by edges 
and atoms by vertices.9 Simple topological descriptors are 
based on the counting of some specific graph elements 
(Kier shape descriptors, Hosoya Z index, pat/walk shape 
indices, self-returning walk counts), but the most com-
mon topological descriptors are obtained by using some 
algebraic operators.9 In QSAR and quantitative structure–
property relationship (QSPR) modeling, the graph-in-
variants have been effectively used in characterization of 
the structural similarity and dissimilarity of compounds.9 
There is no need for energy minimization of the molecu-
lar structure for calculation of topological descriptors. 
Electrostatic descriptors describe many of the electrical 
characteristics of molecules, such as polarity, dipole mo-
ment, polarizability, ionization energy, etc. These charac-
teristics certainly have an influence on interactions be-
tween the molecule and its surroundings, in example 
interactions with cell membranes, extra- and intercellular 
molecules.

The most popular classes of molecules that are used 
in treatment of infections caused by Candida species are 
polyenes, azoles, analogs of nucleosides, allylamines, etc. 
In treatment of Candida albicans infections, fluconazole, 
as one of the members of azoles, is definitely one of the 
most popular antifungals. According to previous studies, 
Candida has developed high-level resistance toward some 
azole antifungal drugs.10 However, some oxazole analogs, 
such as oxazolo[4,5-b]pyridines and benzoxazoles ex-
pressed significant antifungal activity and are considered 
to be a very good basis for development of new antifungal 
therapeutics. This study presents our efforts to define so-
phisticated QSARs that would be limited on prediction of 
antifungal activity of structurally similar oxazolo[4,5-b]
pyridines and benzoxazoles toward Candida albicans. The 
existing QSARs have been defined on the basis of MLR, 
PCR and PLS regression methods applying lipophilicity 
and some physicochemical descriptors.11–14 The ANN 
method with absorption, distribution, metabolism and ex-
cretion (ADME) descriptors was applied for the same pur-
pose as well.14 However, this study explores the impor-
tance of topological and electrostatic characteristics of a 
series of benzoxazoles and oxazolo[4,5-b]pyridines in pre-
diction of their antifungal activity toward Candida albi-
cans.

2. Material and Methods
2. 1. �The Studied Series of Oxazolo[4,5-b]

pyridines and Benzoxazoles 
Structural formulae of the analyzed benzoxazoles 

and oxazolo[4,5-b]pyridines are presented in Figure 1. The 

Figure 1. The molecular structures of the analyzed oxazole deriva-
tives
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analyzed compounds possess various types of substitu-
ents/functional groups, including tert-butylphenyl, ethyl-
phenyl, dimethyl, chlorophenyl, nitrophenyl, fluorophe-
nyl, methoxyphenyl, ethoxyphenyl and acetamide groups. 
The experimental results of determination of the antifun-
gal activity of studied derivatives against Candida albicans 
MTCC 183 are given in literature.15 Antifungal activity in 
the form of minimum inhibitory concentration (MIC), 
that was used in further QSAR–ANN modeling, was 
mathematically transformed in the form of logarithm of 
the MIC reciprocal value, log(1/cMIC).  

2. 2. �Electrostatic and Topological Descriptors 
Calculation
The set of 35 electrostatic and 10 topological descrip-

tors was calculated by using PreADMET online software.16 
The structural optimization and energy minimization 
were not required since the molecular descriptors were 
calculated on the basis of 2D structures. The values of the 
calculated descriptors are shown in Supplementary data 
(Table S1).  

2. 3. Chemometric Methods
The first step in chemometric analysis was the selec-

tion of the most appropriate descriptors which will be used 
as inputs in ANN modeling. For this purpose, stepwise se-
lection (SS) procedure was applied by using NCSS statisti-
cal software.17 In the SS procedure minimum change in the 
root mean square error (RMSE) was used as a measure for 
removing or adding variables. In the present analysis, the 
limit of RMSE change was set at 0.05.

Artificial neural networks are a non-linear chemom-
etric tool. They have been widely applied in modeling of 
complex relationships between different type of variables, 
which is usually the case in prediction of biological activity 
of many biologically active compounds. An ANN consists 
of several layers: the input layer, one or more hidden lay-
ers, and one output layer.18 The ANNs were trained apply-
ing the feedforward multilayer perceptron (MLP) ANN 
function with Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
learning algorithm in Statistica 10.0 software.19 The data 
normalization was carried out by min-max normalization 
method.20, 21

Prior to ANN modeling, the analyzed compounds 
were divided into the training set (compounds 1, 2, 3, 4, 5, 
6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22 and 23), validation 
set (compounds 12, 14 and 24) and test set (compounds 7, 
10 and 16).

The estimation of the contribution of every input 
variable in a network was done by calculation of Global 
sensitivity analysis (GSA) coefficients.22 A GSA coefficient 
describes the ANN’s outputs changes that are caused by 
variations in the parameters that affect the ANN. If the 
GSA index is higher than 1, the greater change in ANN’s 

performance is achieved with minor variation in the input 
variable.22, 23

The ANN models’ validity was estimated on the basis 
of the following statistical parameters: R (correlation coef-
ficient), Rtr (correlation coefficients of training set),  Rt 
(correlation coefficients of test set), Rv (correlation coeffi-
cients of validation set), RMSE (root mean square error), 
RMSEtr (root mean square error of training set), RMSEt 
(root mean square error of test set), RMSEv (root mean 
square error of validation set), F–test, variation coefficient 
(VC) and significance level (p). Also, the analysis of resid-
uals and the graphical comparison of predicted and exper-
imental data were carried out in order to estimate predic-
tive ability of ANN models. 

SRD method was used as relatively new approach in 
comparison of samples, compounds, models.24 The pur-
pose of the SRD analysis in this study was to reveal possi-
ble similarities or dissimilarities among the analyzed mol-
ecules on the basis of their topological and electrostatic 
descriptors used in ANN modeling. In the SRD analysis 
the row average values were used as the reference ranking. 
It is substantially different than hierarchical cluster analy-
sis (HCA) and principal component analysis (PCA) ap-
proaches. The SRD methodology, its algorithms and prac-
tical uses are described in details in literature.24–26 The 
validation of SRD analysis was done by comparison of 
ranks by random numbers (CRRN) and 7-fold cross-vali-
dation.24

3. Results and Discussion
3. 1. �The Selection of Suitable Variables –  

SS Procedure

SS analysis was conducted after the descriptors cal-
culation procedure. The significance level of 0.05 was re-
quired for a variable to enter the equation, while the signif-
icance level of 0.20 was used as a criterion for removal of 
variables from the model. The iterations number was set at 

Table 1. The results of stepwise selection procedure.

Iteration 
number	

Action	 Variable	 R2	 Sqrt(MSE)

  0	 Unchanged		  0.0000	 0.1253
  1	 Added	 RPCS	 0.2914	 0.1078
  2	 Added	 PNSA1	 0.5010	 0.0926
  3	 Added	 RNCS	 0.5764	 0.0874
  4	 Added	 FNSA1	 0.6175	 0.0853
  5	 Added	 Rouvray_Index	 0.6963	 0.0780
  6	 Added	 FPSA1	 0.8093	 0.0636
  7	 Added	 WI	 0.8990	 0.0477
  8	 Added	 Gutman_2D_MTI	 0.9150	 0.0452
  9	 Added	 TNC	 0.9240	 0.0443
10	 Unchanged		  0.9240	 0.0443
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500. As a result of SS analysis, the subset of 9 calculated 
descriptors was formed (Table 1).

The selected descriptors, suggested by SS analysis, 
are the following: RPCS (relative positive charge surface 
area), PNSA1 (partial negative surface area 1st type), 
RNCS (relative negative charge surface area), FNSA1 
(fractional charged partial negative surface area 1st type), 
Rouvray index, FPSA1 (fractional charged partial posi-
tive surface area 1st type), WI (Wiener index), Gutman 
2D MTI (Gutman 2D molecular topological index) and 
TNC (total negative charge). This subset of 9 descriptors 
was used as the input variables for further ANN model-
ing.

3. 2. �ANN Modeling and Validation  
of Models
The ANN modeling resulted into three statistically 

very good models, whose activation functions and statisti-

cal parameters are presented in Table 2. The comparison of 
statistical quality of the obtained ANNs was done based on 
these parameters. Exponential (Exp) and tangent (Tanh) 
functions were used as MLP activation functions for hid-
den and output neurons. The total number of 150 ANNs 
was obtained, but only three ANNs were chosen as the best 
ones. During the training of the networks, the number of 
neurons in the hidden layer varied in the range of 2–20. 
The architecture of the obtained ANNs is presented in Fig-
ure 2.

Based on the data given in Table 2 it can be seen that 
the statistical quality of selected ANNs is very similar. The 
comparison of the ANNs quality was estimated by com-
paring their R and RMSE values (Figure 3). The compari-
sons of RMSE and R indicate that the network MLP 9-14-1 
make the best concurrence of the data (the highest R) with 
the lowest RMSE values (Figure 3). 

Table 2. The results of ST-ANN procedure.

Network	 MLP 9-7-1	 MLP 9-13-1	 MLP 9-14-1
architecture

Rtrain	 0.9701	 0.9759	 0.9726
Rtest	 0.9534	 0.9909	 0.9786
Rval	 0.9986	 0.9997	 0.9986
RMSEtrain	 0.002930	 0.002456	 0.002875
RMSEtest	 0.001077	 0.000669	 0.000082
RMSEval	 0.005169	 0.013497	 0.003369
F-test	 350.7	 295.6	 431.6
VC(%)	 0.79	 0.84	 0.68
p-value	 0.000000	 0.000000	 0.000000
Hidden activation	 Tanh	 Tanh	 Tanh
Output activation	 Exponential	 Exponential	 Exponential
Training algorithm	 BFGS 20	 BFGS 20	 BFGS 19

Figure 2. The general architecture of the established QSAR–ANN 
models. 

Figure 3. Comparisons of R and RMSE values of the established 
networks.

The prediction ability of the established networks 
is tested by the graphical comparison of the predicted 
and experimental log(1/cMIC) values (Figure 4). The 
outstanding concurrence between the predicted and ex-
perimental values and small scattering of the points 
around linear relationship indicate high quality of the 
obtained models. Also, the slope of this linear relation-
ship is very close to 1 and the intercept is very close to 
zero. This is another proof of the outstanding predictive 
ability of the ANNs. The residuals versus predicted 
log(1/cMIC) values plots for the established networks are 
presented in Figure 5. The presented ANN models fit 
the data well since the residuals behave randomly, 
which is obvious from the presented plots. The ampli-
tude of the residuals is in acceptable range. The applica-
tion of the external test set confirmed the quality of the 
established networks.

Other confirmation of reliability of the obtained net-
works is individual percentage deviations (IPD%) for ex-
perimental–predicted values pairs. Figure 6 shows that all 
three ANNs have almost all IPD% values lower than 2.0% 
which indicates acceptable differences between predicted 
and experimental log(1/cMIC) values.
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Figure 4. Correlations between the experimental and predicted antifungal activity of the analysed compounds.

Figure 5. Predicted vs. residual values plots.

3. 3. Global Sensitivity Analysis

As the result of global sensitivity analysis, the GSA 
coefficients were calculated by the applied software for ev-

ery input variable. A GSA coefficient is presented in the 
following form:

GSA = ERRo / ERRp 			                    (1)
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The first group (the compounds 2, 10, 13, 17, 19, 20, 21, 22 
and 23) is characterized by the ranking number 0, which 
means that these compounds have the same ranking as the 
reference one. The second group (the compounds 1, 3, 4, 5, 
7, 8, 11, 12, 14, 15 and 16) has the ranking number 2 and 
third group (the compounds 6, 9 and 24) the ranking num-
ber 4. The second and third group are considered to be very 
close to the reference ranking and contain most of the ben-
zoxazole derivatives. However, the compound 18, with the 
ranking number 6, is separated from the other compounds, 
but still can be considered relatively close to the reference 
ranking in the variable space (since it fits very well in the es-
tablished QSAR models, it is not considered to be an outlier 
in the QSAR models). This compound has most of the mo-
lecular descriptors that are significantly different from the 
molecular descriptors of other compounds. Generally, oxaz-
olo[4,5-b]pyridines are placed in the first group, indicating 
their distinctiveness regarding RPCS, PNSA1, RNCS, 
FNSA1, Rouvray index, FPSA1, WI, Gutman 2D MTI and 
TNC molecular features. The compounds 9 and 24 from the 
third group are specific due to the presence of –NO2 func-
tional group in their structures. The presented results of SRD 
analysis of oxazolo[4,5-b]pyridines and benzoxazoles re-
vealed particular similarities/dissimilarities among the ana-
lyzed derivatives. This fact could be particularly interesting 
for further 3D-QSAR and 4D-QSAR modeling and molecu-
lar docking studies of antifungal activity of oxazolo[4,5-b]
pyridines and benzoxazoles toward Candida albicans. 

4. Conclusions
The conducted variable selection procedure and arti-

ficial neural network modeling resulted in three reliable 

where ERRo is the network error when the observed input 
variable is omitted and ERRp is the network error when the 
observed input variable is included in the model. The GSA 
coefficients for MLP 9-7-1, MLP 9-13-1 and MLP 9-14-1 
networks are given in Figure 7. As it is shown in the pie 
charts, each input variable is described by GSA coefficient 
higher than 1. This indicates a significance of each input 
variable, particularly the significance of RPCS, FPSA1 and 
PNSA1 descriptors (the highest average GSA coefficients).

In comparison with the results of QSAR analysis of 
oxazolo[4,5-b]pyridines and benzoxazoles previously 
published in literature,13,14 the results described in the 
present paper are based on non-linear prediction of their 
antifungal activity based on topological and electrostatic 
descriptors, while in the previous studies13 the linear mod-
eling (PCR and PLS) of the antifungal activity have been 
carried out on the basis of some physicochemical and lipo-
philicity descriptors, as well as non-linear prediction 
(ANN) of antifungal activity based on some ADME de-
scriptors.14 The presented results emphasized the influence 
of electrostatic and topological molecular features on the 
antifungal activity based on the established non-linear 
models. These models can be considered slightly statisti-
cally better than the models presented in literature.13,14

3. 4. �Sum of Ranking Differences Analysis 
of Oxazolo[4,5-b]pyridines and 
Benzoxazoles
SRD analysis was carried out on the basis of average 

row values as the reference value of the variables included in 
the ANN models (consensus ranking). The results of the 
SRD analysis (Figure 8) indicate the separation of the com-
pounds into three main groups and detection of one outlier. 

Figure 6. Individual percentage deviations (IPD%) of predicted values compared with the experimental values.



489Acta Chim. Slov. 2018, 65, 483–491

Kovačević et al.:    Electrostatic and Topological Features as Predictors  ...

measures, by comparisons of the experimental and pre-
dicted data including the residuals analysis. Applying step-
wise selection procedure, the most important electrostatic 
and topological descriptors were determined: RPCS, 

Figure 7. The GSA coefficients of the established ANNs and their average values.

Figure 8. The result of SRD-CRRN analysis of oxazolo[4,5-b]pyridines and benzoxazoles. The statistical properties of theoretical distribution func-
tion are: first icosaile (5%), XX1 = 16; first quartile, Q1 = 22; median, Med = 26; last quartile, Q3 = 32; last icosaile (95%), XX19 = 36.

neural networks which can be used in prediction of anti-
fungal potential of structurally similar oxazolo[4,5-b]pyri-
dines and benzoxazoles. The prediction ability of the ob-
tained networks has been confirmed by adequate statistical 
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PNSA1, RNCS, FNSA1, Rouvray index, FPSA1, WI, Gut-
man 2D MTI and TNC. These descriptors can be used as 
predictor variables in assessment of minimum inhibitory 
concentrations of novel oxazolo[4,5-b]pyridine and ben-
zoxazole derivatives prior to their synthesis, and in that 
way, facilitate synthesis of more effective antifungal agents. 
The SRD-CRRN analysis, which was based on the molecu-
lar descriptors included in the ANN models and average 
row values as a reference ranking, detected certain struc-
tural similarities in the applied variable space.
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Povzetek
Rezultati, predstavljeni v tej študiji, vključujejo napoved protiglivične aktivnosti 24 derivatov oksazola, ki temeljijo na 
njihovih topoloških in elektrostatičnih molekularnih deskriptorjih, ki izhajajo iz 2D molekularnih struktur. Metoda 
umetnega nevronskega omrežja (ANN) je bila uporabljena kot regresijsko orodje. Vhodni podatki za modeliranje ANN 
so bili izbrani s postopnim izbiranjem (SS). Modeliranje ANN je privedlo do treh mrež z izjemnimi statističnimi značil-
nostmi. Visoka predvidljivost vzpostavljenih omrežij je bila potrjena s primerjavami predvidenih in eksperimentalnih 
podatkov ter s preostalo analizo. Dobljeni rezultati kažejo na koristnost nastalih ANN pri natančni napovedi minimalnih 
inhibitornih koncentracij analiziranih spojin proti Candida albicans. V tej študiji je bila uporabljena metoda vsote raz-
vrstitvenih razlik (SRD), da bi razkrili možno združevanje spojin v prostoru spremenljivk, uporabljenih pri modeliranju 
ANN. Dobljene rezultate lahko štejemo kot prispevek k razvoju novih protiglivičnih zdravil, ki strukturno temeljijo na 
oksazolnem jedru, še posebej v današnjih časih, ko primanjkuje visoko učinkovitih antimikotikov


