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1. Introduction

In the classic paper of Arens and Dugundji [2] an exhaustive study of proper and admissible topologies on the set of
continuous functions was undertaken. Naimpally in [16] introduced the notion of graph topology and investigated some of
its properties. This topology was further studied in [17,4,12] and some other papers.

In [5], besides other topics, θ -continuous functions from a space X to a space Y were discussed and a topology on the
set of these functions analogous to the compact-open topology. A special Čech closure operator, θ -closure, was considered
in [14].

In [8–10] different types of continuous-like functions (defined by means of θ -closure) between topological spaces have
been considered and topologies on sets of these functions investigated. It was shown in [13] that some of the obtained
results for function spaces hold in the setting of closure spaces as well, in particular those concerning proper and admissible
topologies.

Kočinac in [11] studied some closure properties of the space Ck(X) of continuous real-valued functions on a space X
equipped with the compact-open topology.

The aim of this paper is to generalize the notions of the compact-open and graph topology to the set of functions
between two Čech closure spaces and to investigate some properties of these spaces. In particular, the separation properties
of the initial spaces are related to those of function spaces.

2. Preliminaries

First we recall several definitions.
An operator u : P (X) → P (X) defined on the power set P (X) of a set X satisfying the axioms:
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(C1) u(∅) = ∅,
(C2) A ⊂ u(A) for every A ⊂ X ,
(C3) u(A ∪ B) = u(A) ∪ u(B) for all A, B ⊂ X ,

is called a Čech closure operator and the pair (X, u) is a Čech closure space. For short, (X, u) will be denoted by X as well,
and called a closure space or a space.

A subset A is closed in (X, u) if u(A) = A holds. It is open if its complement is closed.
The interior operator intu : P (X) → P (X) is defined by means of the closure operator in the usual way: intu = c ◦ u ◦ c,

where c : P (X) → P (X) is the complement operator. A subset U is a neighbourhood of a point x (respectively subset A) in
X if x ∈ intu U (respectively A ⊂ intu U ) holds. The collection of all neighbourhoods of x will be denoted by Nx or N (x).

In (X, u), a point x ∈ u(A) if and only if for each neighbourhood U of x, U ∩ A 
= ∅ holds.
Separation axioms are defined in the usual way (see [3], Section 27). A space (X, u) is:
T0 if for each two distinct points in X at least one has a neighbourhood which does not contain the other point.
T1 if for each two distinct points in X the following holds: ({x} ∩ u({y})) ∪ ({y} ∩ u({x})) = ∅ whenever x 
= y. It is

equivalent to: every one-point subset of X is closed in (X, u).
T2 (Hausdorff) if each two distinct points have disjoint neighbourhoods.
Regular if for each x /∈ u(A) there exist disjoint neighbourhoods U of x and V of A. It is equivalent to: for every point x

and a neighbourhood U of x there is a neighbourhood V of x such that x ∈ V ⊂ u(V ) ⊂ U holds.
Normal if each two subsets A and B such that u(A) ∩ u(B) = ∅, have disjoint neighbourhoods.
Since every completely regular (Tikhonov) Čech closure space is topological, we consider only spaces with lower separa-

tion axioms.
A function f : (X, u) → (Y , v) is continuous if for every x ∈ X the inverse image of every neighbourhood of f (x) is a

neighbourhood of x; equivalently, f (u(A)) ⊂ v( f (A)) for every A ⊂ X . The set of all continuous functions from (X, u) to
(Y , v) is denoted by C(X, Y ).

A collection {Gα} is an interior cover of a set A in (X, u) if the collection {intu Gα} covers A. We suppose that the interior
of every element of an interior cover is nonempty.

A subset A in a space (X, u) is compact if every interior cover of A has a finite subcover, not necessarily interior.
The topological modification û of the operator u is the finest Kuratowski closure operator coarser than u. The correspond-

ing topology T (û) consists of all open sets in (X, u).
We also consider the topology T (ũ) on (X, u) having for a basis the collection J = {intv(B) | B ⊂ Y }. (See [1].) Its

(Kuratowski) closure operator will be denoted by ũ.
On Y X , the set of all functions from (X, u) to (Y , v), the product closure operator is defined by means of neighbourhoods:

for every f ∈ Y X the family N ( f ) = {π−1
x (V ) | x ∈ X, V ∈ N f (x) in (Y , v)}, is a neighbourhood subbase at f . Canonical

neighbourhoods are finite intersections of subbasis elements. Denote by �v the product closure operator on Y X . For subsets
Bx ⊂ Y , we have the closure (�v)(�x∈X Bx) = �x∈X v(Bx) (the closure of the product of subsets is the product of the
closures). Also, if G is a neighbourhood of f ∈ Y X , then πx(G) is a neighbourhood of f (x) ∈ Y and (Y , v) is homeomorphic
to a subspace of the product.

As in the topological case, the product space (Y X ,�v) is T0 (respectively T1, T2, regular) if and only if (Y , v) is such.
Also, the subspace of constant functions is homeomorphic to (Y , v).
All notions not explained here concerning Čech closure spaces can be found in [3] and [13]; while those concerning

function spaces in [6] and [15].

3. Graph topologies for function spaces

Let (X, u) and (Y , v) be closure spaces, (X × Y , u × v) their product closure space and F ⊂ Y X a collection of functions
from (X, u) to (Y , v). G( f ) is the usual notation for the graph of f .

Denote by G O the graph-open topology on F having for a basis sets of the form

[W ] = {
f

∣∣ G( f ) ⊂ W
}

and W is open in (X × Y , u × v), that is W ∈ T (û × v) = T (û) × T (v̂); (1)

and by G I the graph-interior topology on F having for a basis sets of the form

[int W ] = {
f

∣∣ W ∈ N
(
G( f )

)} = {
f

∣∣ G( f ) ⊂ intu×v W
}
. (2)

Clearly, G O ⊂ G I .

Theorem 3.1. If (X, u) is a T1-space and (Y , v) is a T0-space, then (F , G I) is T0 .

Proof. Let f , g ∈ F and f 
= g hold. There is an x ∈ X such that f (x) 
= g(x). We can assume that there exists a V ∈ N ( f (x))
such that g(x) /∈ V . Since (X, u) is T1 the set W = (X\{x})× Y ∪ (X × V ) is a neighbourhood of G( f ), while G(g) 
⊂ W . Thus
f ∈ [int W ] and g /∈ [int W ].

Note that if (X, u) is T1 and (Y , v̂) is T0, then (F , G O) is T0. �



1392 D. Andrijević et al. / Topology and its Applications 158 (2011) 1390–1395
Conversely, we have

Theorem 3.2. If F contains the constant functions and (F , G O) is T0 , then (Y , v̂), and thus (Y , v), is T0 .

Theorem 3.3. For a set Y that contains at least two points the following holds:

(i) If (X, u) and (Y , v) are T1-spaces then (F , G O) and (F , G I) are T1;
(ii) If F contains the constant functions and (F , G O) or (F , G I) is T1 , then (X, u) and (Y , v) are T1 .

Proof. (i) ⇒ (ii) If (X, u) and (Y , v) are T1, then for f 
= g there is an x ∈ X such that f (x) 
= g(x). The set W = (X\{x}) ×
Y ∪ X × (Y \{ f (x)}) is an open neighbourhood of G( f ), while G(g) 
⊂ W . It follows that (F , G O) is T1 and so is (F , G I).

(ii) ⇒ (i) Conversely, let (F , G I) be T1. If (Y , v) is not T1, equivalently (Y , v̂) is not T1, there are y1, y2 ∈ Y , y1 
= y2,

such that for every V ∈ N (y1), y2 ∈ V . We can take V to be open in (Y , v). Let f and g be constant functions, f (X) = {y1}
and g(X) = {y2}. Then for every W ∈ N (G( f )), G(g) ⊂ W holds since (x, f (x)) = (x, y1) ∈ U (x)× V ⊂ W implies (x, g(x)) =
(x, y2) ∈ U (x) × V ⊂ W , that is f ∈ [int W ] implies g ∈ [int W ] and (F , G I) is not T1.

To prove that (X, u) is T1, suppose it is not. There are x1, x2 ∈ X , x1 
= x2, such that for every U ∈ N (x1), x2 ∈ U holds.
We can take U to be open in (X, u). Pick y1, y2 ∈ Y , y1 
= y2, and set g(x) = y1 for all x and f (x) = y1 for x 
= x2,
and f (x2) = y2. For every W ∈ N (G( f )), W ∈ N (G(g)) holds, as for each x 
= x2, f (x) = g(x) and (x1, f (x1)) = (x1, y1) ∈
U × V (y1) ⊂ W imply (x2, g(x2)) = (x2, y1) ∈ U × V (y1) ⊂ W . So (F , G I) is not T1. �
Theorem 3.4. For a set Y that contains at least two points the following holds:

(i) If (X, u) is T1 and (Y , v) is T2 , then (F , G I) is T2;
(ii) If F contains the constant functions and (F , G O) is T2 , then (X, u) is T1 and (Y , v̂), and thus (Y , v), is T2 .

Proof. If (X, u) is T1 and (Y , v) is T2, then for f 
= g there is an x ∈ X such that f (x) 
= g(x). Since (Y , v) is T2, there
are V 1 ∈ N ( f (x)) and V 2 ∈ N (g(x)) such that V 1 ∩ V 2 = ∅. Since (X, u) is T1, the set X\{x} is open in X , so W1 =
(X\{x})× Y ∪ (X × V 1) and W2 = (X\{x})× Y ∪ (X × V 2) are disjoint neighbourhoods of G( f ), and G(g) respectively. Hence
f ∈ [int W1], g ∈ [int W2], and [int W1] ∩ [int W2] = ∅. So (F , G I) is T2.

Conversely, let (F , G O) be T2. If (Y , v̂) is not T2, there are distinct y1, y2 such that for every open V 1 ∈ N (y1) and
V 2 ∈ N (y2), V 1 ∩ V 2 
= ∅ holds. Let f and g be constant functions, f (X) = {y1} and g(X) = {y2}. Then for every open
W1 ∈ N (G( f )) and W2 ∈ N (G(g)), W1 ∩ W2 
= ∅ holds. Pick an x ∈ X . There are open sets U1 and U2 in (X, u) and V 1 and
V 2 in (Y , v) such that (x, f (x)) = (x, y1) ∈ U1 × V 1 ⊂ W1 and (x, g(x)) = (x, y2) ∈ U2 × V 2 ⊂ W2. For any y ∈ V 1 ∩ V 2 we
have (x, y) ∈ W1 ∩ W2.

That (X, u) is T1, follows from the previous statement. �
Theorem 3.5. Let (X, u) be a regular space, (Y , v̂) be T0 and F ⊂ C(X, Y ). Then (F , G I) is T0 .

Proof. Let f 
= g in F . There is an x ∈ X such that f (x) 
= g(x). We can assume that there exists an open set V ⊂ Y such that
f (x) ∈ V and g(x) /∈ V . Since f is continuous and X is regular, there is a U ⊂ X such that U ∈ N (x) and u(U ) ⊂ f −1(V ).
Then G( f ) ⊂ intu×v W where W = ( f −1(V ) × V ) ∪ (U c × Y ), while G(g) 
⊂ W . Hence f ∈ [int W ] while g /∈ [int W ]. �
Lemma 1. If f : (X, u) → (Y , v) is a continuous function and Y is a T2-space, then the graph G( f ) is closed in X × Y .

Proof. If (x, y) /∈ G( f ) then y 
= f (x). Since Y is T2, there are disjoint sets V 1 ∈ N ( f (x)), V 2 ∈ N (y). Since f is continuous,
there is a U ∈ N (x) such that f (U ) ⊂ V 1. It follows that U × V 2 ∈ N (x, y) in X × Y and U × V 2 ⊂ G( f )c. Thus G( f )c is
open being a neighbourhood of each of its points. �
Lemma 2. If f : (X, u) → (Y , v) is a continuous function and W an open subset in X × Y , then the set A = {x | (x, f (x)) ∈ W } is
open in X.

Proof. Analogous to that of Lemma 3.9 in [12]. �
Theorem 3.6. Let Y be a T2-space and F ⊂ C(X, Y ). If X × Y is normal, then (F , G O) is regular.

Proof. Let [W ] be a neighbourhood of f in (F , G O), that is W be an open set in X × Y containing G( f ). By Lemma 1, G( f )
is closed in X ×Y . Thus G( f ) ⊂ W implies that G( f ) and W c have disjoint closures. By normality of X ×Y there are disjoint
H1, H2 ⊂ X × Y , H1 ∈ N (G( f )), H2 ∈ N (W c). To prove the statement, it is enough to show that G O cl[int H1] ∩ [W ]c = ∅.
Let g ∈ [W ]c. Then G(g) 
⊂ W . The set A = {x | (x, g(x)) ∈ W } is open in X by Lemma 2. Hence G(g) ⊂ int((A × Y ) ∪ H2).
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Moreover, [int H1] ∩ [int (A × Y ) ∪ H2] = ∅ since h ∈ [int H1] ∩ [int (A × Y ) ∪ H2] implies G(h) ⊂ int(H1 ∩ ((A × Y ) ∪ H2)).
Let x /∈ A. Then (x,h(x)) ∈ H1 ∩ H2 = ∅, which is a contradiction. �
4. Compact-open and compact-interior topology

Let (X, u) and be (Y , v) be closure spaces. For A ⊂ X and B ⊂ Y let

[A, B] = {
f ∈ F

∣∣ f (A) ⊂ B
}
. (3)

The sets [C, V ] where C is a compact subset of X and V open in Y form a subbase for a topology C O on F which will be
called the compact-open topology.

The sets [C, intv V ] where C is a compact subset of X and V ⊂ Y form a subbase for a topology C I on F which will be
called the compact-interior topology.

Note that in the case when (Y , v) is a topological space the compact-interior and the compact-open topologies coincide.

Theorem 4.1. If (Y , v) is a T2-space, then (F , C I) is T2 .

Proof. Clear. �
Theorem 4.2. If (Y , v̂) is T2 (respectively regular), then the space (C(X, Y ), C O) is T2 (respectively regular).

Proof. We prove only regularity. Let [C, V ] be a subbase element and f ∈ [C, V ]. By regularity of (Y , v̂), for each x ∈ C there
is an open set W x such that f (x) ∈ W x ⊂ v̂(W x) ⊂ V . The collection {W x | x ∈ C} is an interior cover of the compact set
f (C), so there is a finite subcover {W xi | i = 1, . . . ,m}. The set W = ⋃m

i=1 W xi is open and f (C) ⊂ W ⊂ v̂(W ) ⊂ V holds.
Note that the set v̂(W )c is open in (Y , v), hence for each x ∈ C the set [{x}, v̂(W )c] is open and, consequently,

[{x}, v̂(W )] = [{x}, v̂(W )cc] is closed in C O. It follows that [C, v̂(W )] = ⋂
x∈C [{x}, v̂(W )] is closed, and the open set

[C, W ] ∈ C O satisfies the inclusions [C, W ] ⊂ C Ocl[C, W ] ⊂ [C, v̂(W )] ⊂ [C, V ]. �
Theorem 4.3. If (Y , V ) is a locally compact T2 topological space, then the composition map

C(X, Y ) × C(Y , Z) → C(X, Z)

is continuous, provided the compact-open topology is used throughout.

Proof. Let ( f , g) ∈ C(X, Y ) × C(Y , Z) and g ◦ f ∈ [C, W ], where C is compact in (X, u) and W open in (Z , w). Since
g( f (C)) ⊂ W , for each y ∈ f (C) there is an open set G(y) ⊂ Y such that g(G(y)) ⊂ W . There is an open set V (y) such
that y ∈ V (y) ⊂ V (y) ⊂ G(y) and V (y) is compact. Consider a finite subcover {V (yi) | i = 1, . . . ,m} of the compact set
f (C). Then f (C) ⊂ V = ⋃m

i=1 V (yi) ⊂ V = ⋃m
i=1 V (yi) ⊂ ⋃m

i=1 G(yi). For each f1 ∈ [C, V ] and g1 ∈ [V , W ], (g1 ◦ f1)(C) =
g1( f1(C)) ⊂ g1(V ) ⊂ g1(V ) ⊂ W holds. �

We recall the notions we use in the sequel. (See [2] or [13].)
Let X, Y and Z be three spaces. The exponential function is the mapping E : C(Z × X, Y ) → C(Z , C(X, Y )) defined as

follows: for every (continuous) g : Z × X → Y the function E(g) = g∗ from Z to C(X, Y ) is defined by g∗(z)(x) = g(z, x).
Conversely, to each g∗ : Z → C(X, Y ) the corresponding function g : Z × X → Y defined by g(z, x) = g∗(z)(x) is continuous
in x for each fixed z.

The evaluation mapping ε : C(X, Y ) × X → Y is defined by ε( f , x) = f (x).
A topology T on C(X, Y ) is called:

proper (splitting) if for any closure space (Z , w),
(1) g : (Z , w) × (X, u) → (Y , v) is continuous ⇒ g∗ : (Z , w) → (C(X, Y ), T ) is continuous;

admissible (jointly continuous) if for every space (Z , w),
(2) g∗ : (Z , w) → (C(X, Y ), T ) is continuous ⇒ g : (Z , w) × (X, u) → (Y , v) is continuous.

Theorem 4.4. (Theorem 10 in [13]) The compact-open topology on C(X, Y ) is proper.

Theorem 4.5. If the evaluation mapping ε : (C(X, Y ), T ) × (X, u) → (Y , v) is continuous for some topology T , then T is finer than
the compact-open topology.

Proof. By Theorem 1 in [13], the evaluation mapping ε : (C(X, Y ), T ) × (X, u) → (Y , v) is continuous if and only if T is
admissible. By Theorem 4.4, the compact-open topology C O is proper, and by Theorem 4 in [13], T is finer than C O, i.e.
C O ⊂ T holds. �
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We use the following

Definition. A closure space (X, u) is locally compact if compact neighbourhoods form a local base at each of its points.

Theorem 4.6. If (X, u) is locally compact and (Y , V ) is a topological space, the space C(X, Y ) with the compact-open topology is
admissible.

Proof. By Theorem 1 in [13] it is sufficient to prove that the evaluation map ε : (C(X, Y ), T )× (X, u) → (Y , v) is continuous.
Let ( f , x) ∈ C(X, Y ) × X and V ∈ V be an open neighbourhood of ε( f , x) = f (x). By continuity of f there is an open
neighbourhood U of x such that f (U ) ⊂ V . Let C be a compact neighbourhood of x contained in U . Then [C, V ] × C is a
neighbourhood of ( f , x) and for any f1 ∈ [C, V ] and x1 ∈ C , ε( f1, x1) = f1(x1) ∈ f1(C) ⊂ V holds. �

Theorems 4.4 and 4.6 generalize the well-known fact that for a regular locally compact topological space X and an
arbitrary topological space Y , the compact-open topology on C(X, Y ) is always proper and admissible (see Theorem 1 in [7]
and Theorem 4.71 in [2]).

5. Relations between some topologies on Y X and the product closure space

Denote by T O the topology on Y X having for a subbase sets of the form

[{x}, V
] = {

f
∣∣ f (x) ∈ V

}
where V is open in (Y , v); (4)

and by T I the topology on Y X having for a subbase sets of the form

[{x}, intv V
] = {

f
∣∣ V is a neighbourhood of f (x) in (Y , v)

} = {
f

∣∣ V ∈ N
(

f (x)
)}

. (5)

In other words, the collection [{x}, G] for x ∈ X and G ∈ J is a subbase for the topology T I .
The topology T O is the product of topological modifications, T O = T (�v̂) = T (�̂v) and T I = T (�ṽ) = T (�̃v).
Hence on Y X the following is true: the closure operator defined by T O is coarser than �v , which is coarser than the

closure operator defined by T I .
By taking the singletons for the sets C in the definition of compact-open and compact-interior topology on Y X , the

topologies T O and T I are obtained. Hence T O is coarser than the compact-open topology C O and the topology T I is
coarser than the compact-interior topology C I .

Theorem 5.1.

(i) The spaces (Y X , T I) and (Y X , C I) are T0 (respectively T1 , T2) if and only if (Y , v) is T0 (respectively T1 , T2).
(ii) The spaces (Y X , T O) and (Y X , C O) are T0 (respectively T1 , T2) if and only if (Y , v̂) is T0 (respectively T1 , T2).

Proof. (i) If (Y , v) is T0 (respectively T1, T2), then the product space (Y X ,�v) is T0 (respectively T1, T2), and so are (Y X , T I)

and (Y X , C I).
To prove the converse, let (Y X , T I) be T0, y1, y2 ∈ Y be two distinct points and c y1 , c y2 ∈ Y X the corresponding constant

functions. Let
⋂k

i=1[{xi}, intv V i] be a canonical neighbourhood of c y1 in (Y X , T I) not containing c y2 . Then
⋂k

i=1 V i is a
neighbourhood of y1 in (Y , v) which does not contain y2.

Now suppose that (Y X , C I) is T2 and c y1 , c y2 ∈ Y X are two distinct elements with disjoint canonical neighbourhoods⋂k
i=1[C ′

i, intv V ′
i ] and

⋂m
j=1[C ′′

j , intv V ′′
j ] respectively. The sets V ′ = ⋂k

i=1 V ′
i and V ′′ = ⋂m

j=1 V ′′
j are disjoint neighbourhoods

in (Y , v) of y1 and y2 respectively.
The other properties may be proved in a similar way. �

Theorem 5.2. Denote by K = {c y | y ∈ Y } the set of all constant functions from (X, u) into (Y , v). Then:

(i) In (Y X , T O) and (Y X , C O) the subspace K is homeomorphic to (Y , v̂);
(ii) In (Y X , T I) and (Y X , C I) the subspace K is homeomorphic to (Y , ṽ).

6. Relations between graph topology and other function space topologies

Theorem 6.1. If (X, u) is a T1-space, then the closure operator defined by T O is coarser than �v, which is coarser than the closure
operator defined by T I and T I ⊂ G I holds.
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Proof. For the last inclusion, a subbasis element in T I is of the form [{x}, intv V ] = { f | V ∈ N ( f (x))}. Since X is T1, the
set X\{x} is open in X . For the set W = (X\{x}) × Y ∪ (X × V ) we have [int W ] = { f | f (x) ∈ intv V } = [{x}, intv V ].

By a similar argument it may be proved that T O ⊂ G O holds. �
Theorem 6.2.

(i) If (X, u) is a T2-space, then C I ⊂ G I and C O ⊂ G O.
(ii) If (X, û) is compact and T2 , then the graph-open topology coincides with the compact-open topology.

Proof. (i) A subbasis element in C I is of the form [C, intv V ] = { f | V ∈ N ( f (x))} for every x ∈ C . Since X is T2, the set
X\C is open in X . For the set W = ((X\C) × Y ) ∪ (X × V ) we have [int W ] = { f | f (C) ⊂ intv V } = [C, intv V ].

In the case when the topology C O is considered, the sets V and W are open.
(ii) Follows easily from the definitions. �

Theorem 6.3. Let (X, u) or (X, û) be a regular space, (Y , V ) be a topological space and F ⊂ C(X, Y ). Then the compact-open topology
on F is contained in the graph-open topology.

Proof. Suppose (X, u) is regular. A subbasis element in C O is of the form [C, V ] where V ∈ V . Since X is regular, for each
x ∈ C there is a neighbourhood U (x) such that u(U (x)) ⊂ f −1(V ). The collection {U (x) | x ∈ C} is an interior cover of the
compact set C , so there is a finite subcover {U (xi) | i = 1, . . . ,m}. Set U = ⋃m

i=1 U (xi). The set W = ( f −1(V )× V )∪ (U c × Y )

is a neighbourhood of G( f ) since for x ∈ u(U ), f −1(V )× V is an open neighbourhood of (x, f (x)), while U c ×Y ∈ N (x, f (x))
for x ∈ u(U )c.

That [C, V ] = [W ] follows from the fact that for each g ∈ [W ] and x ∈ C, (x, g(x)) ∈ G(g) ⊂ W implies (x, g(x)) ∈
f −1(V ) × V , so g(C) ⊂ V , i.e. g ∈ [C, V ] holds.

(ii) By a similar argument, if (X, û) is regular, for a compact set C and open V , C is compact in (X, û), so by regularity
there is an open set U in X such that C ⊂ U ⊂ clû(U ) ⊂ f −1(V ) holds. The set W = ( f −1(V ) × V ) ∪ (û(U )c × Y ) is an open
neighbourhood of G( f ) and g ∈ [C, V ] holds. �
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