Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **24:4** (2010), 53–61 DOI: 10.2298/FIL1004053A

SOME PROPERTIES OF HYPERSPACES OF ČECH CLOSURE SPACES WITH VIETORIS-LIKE TOPOLOGIES

Dimitrije Andrijević, Milena Jelić, Mila Mršević*

Abstract

We study some topological properties of hyperspaces of Čech closure spaces endowed with Vietoris-like topologies. Some of these notions were introduced and considered in [9, 10] and [11], focussing on selection principles.

1 Introduction

In the first part of the book *Topological Spaces* [1] the theory of topological spaces is developed by considering the closure operator which need not be idempotent. We call such an operator a closure operator in the sense of Čech, or a Čech closure operator. In [2, 3, 4] different types of continuous-like functions between topological spaces were considered and topologies on sets of these function investigated. It was shown in [7] that these functions can be considered as continuous functions between closure spaces as well as that the corresponding results for function spaces hold in closure spaces, too. In [9, 10, 11] hyperspaces of closure spaces were introduced and some of their properties expressed by means of selection principles were proved generalizing the well-known topological results (see for example [5]). In the present paper we consider families of subset of a closure space equipped with different Vietoris-like topologies comparing the properties of the space and its hyperspaces.

2 Preliminaries

First we recall several definitions.

An operator $u: \mathcal{P}(X) \to \mathcal{P}(X)$ defined on the power set $\mathcal{P}(X)$ of a set X satisfying the axioms:

²⁰¹⁰ Mathematics Subject Classifications. 54A05, 54B20, 54D05, 54D10, 54D30.

Key words and Phrases. Čech closure space, hyperspace, (generalized) Vietoris topology, strong compactness, topological modification.

Received: May 9, 2010

Communicated by Ljubiša Kočinac

 $^{^{\}ast}$ The third author was supported by the Ministry of Science, Technology and Development, Republic of Serbia.

- (C1) $u(\emptyset) = \emptyset$,
- (C2) $A \subset u(A)$ for every $A \subset X$,
- (C3) $u(A \cup B) = u(A) \cup u(B)$ for all $A, B \subset X$,

is called a *Čech closure operator* and the pair (X, u) is a *Čech closure space*. For short, (X, u) will be denoted by X as well, and called a *closure space* or a *space*.

A subset A is closed in (X, u) if u(A) = A holds. It is open if its complement is closed.

The interior operator $\operatorname{int}_u : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined by means of the closure operator in the usual way: $\operatorname{int}_u = c \circ u \circ c$, where $c : \mathcal{P}(X) \to \mathcal{P}(X)$ is the complement operator. A subset U is a neighbourhood of a point x in X if $x \in \operatorname{int}_u U$ holds.

In (X, u), a point $x \in u(A)$ if and only if for each neighbourhood U of $x, U \cap A \neq \emptyset$ holds.

Separation axioms are defined in the usual way (see [1], Section 27). A space (X, u) is:

 T_0 if for each two distinct points in X at least one has a neighbourhood which does not contain the other point.

 T_1 if for each two distinct points in X the following holds: $(\{x\} \cap u(\{y\})) \cup (\{y\} \cap u(\{x\})) = \emptyset$ whenever $x \neq y$. It is equivalent to: every one-point subset of X is closed in (X, u).

 T_2 (Hausdorff) if each two distinct points have disjoint neighbourhoods.

Regular if for each $x \notin u(A)$ there exist disjoint neighbourhoods U of x and V of A. It is equivalent to: for every point x and its neighbourhood U there is a neighbourhood V of x such that $x \in V \subset u(V) \subset U$ holds.

Since every completely regular (Tikhonov) Čech closure space is topological, we consider only spaces with lower separation axioms.

A collection $\{G_{\alpha}\}$ is an *interior cover* of a set A in (X, u) if the collection $\{int_u G_{\alpha}\}$ covers A. We suppose that the interior of every element of an interior cover is nonempty.

A subset A in a space (X, u) is *compact* (respectively *countably compact*) if every interior cover (respectively countable interior cover) of A has a finite subcover, not necessarily interior.

The following notations are used:

 $\mathcal{H} = \{u(A) \mid A \subset X\}, \quad \mathcal{H}^* = \mathcal{H} \setminus \{\emptyset\}, \quad \mathcal{J} = \mathcal{H}^c = \{\operatorname{int}_u(A) \mid A \subset X\},$ **F**(X) is the family of all nonempty finite subsets of X, **F**_n(X) is the family of all nonempty subsets of X that have at most n elements, **K**(X) is the family of all nonempty compact subsets of X, **2**^X is the family of all nonempty closed subsets of X, **A**(X) is the family of all nonempty subsets of X. The topological modification \hat{u} of the operator u is the finest Kuratowski closure operator coarser than u. The corresponding topology $\mathcal{T}(\hat{u})$ consists of all open sets in (X, u).

We also consider the topology $\mathcal{T}(\tilde{u})$ on (X, u) having for a basis the collection \mathcal{J} . Its (Kuratowski) closure operator will be denoted by \tilde{u} . The collection \mathcal{H} is a base for closed subsets in $(X, \mathcal{T}(\tilde{u}))$.

In general \hat{u} is coarser and \tilde{u} is finer than u. Namely, for every $A \subset X$, $\tilde{u}(A) \subset u(A) \subset \hat{u}(A)$ holds.

Indeed, $x \in \tilde{u}(A)$ if and only if for each $U \subset X$, $x \in \operatorname{int}_u U$ implies $\operatorname{int}_u U \cap A \neq \emptyset$, hence $U \cap A \neq \emptyset$, which is equivalent to $x \in u(A)$. It follows next that for every $U = \operatorname{int}_u U$, $x \in U$ implies $U \cap A \neq \emptyset$ which is equivalent to $x \in \hat{u}(A)$.

Note that u, \hat{u} and \tilde{u} coincide when u is a Kuratowski closure operator.

A subset S of a closure space (X, u) is connected ([1], Definition 20 B.1.) if $S = A \cup B$ and $u(A) \cap B = \emptyset = A \cap u(B)$ implies $A = \emptyset$ or $B = \emptyset$.

By Theorem 20. B.2. of [1], a closure space (X, u) is connected if and only if it is not the union of two disjoint nonempty open (open-and-closed) subsets. Hence

Lemma 1. (X, u) is connected if and only if (X, \hat{u}) is connected.

Recall that a closure space (X, u) is *locally connected at* a point x if connected neighbourhoods of x form a local base at x and (X, u) is *feebly locally connected at* $x \in X$ if there exists a connected neighbourhood of x. (See [1], Definition 21 A.1. and Section 21 B.)

Lemma 2. (See [1], 21 B.9.) If a closure space is (feebly) locally connected, then its topological modification possesses the corresponding property.

We introduce the following

Definition A space (X, u) (respectively a subset A) is strongly compact if every interior cover of X (respectively A) has a finite interior subcover. In other words, X (respectively A) is strongly compact in (X, u) if and only if it is $\mathcal{T}(\tilde{u})$ -compact.

For a subset $A \subset X$ the usual notations are $A^+ = \{H \in \mathcal{H} \mid H \subset A\}$ and $A^- = \{H \in \mathcal{H} \mid H \cap A \neq \emptyset\}.$

Open sets in (X, u) define the Vietoris topology **V** on $\mathbf{A}(X)$ and its subcollections, while the elements of $\mathcal{T}(\tilde{u})$ define the Vietoris topology that will be denoted by $\mathbf{V}^{\#}$.

In the setting of Čech closure spaces the generalized upper and lower Vietoris topologies \mathbf{W}^+ and \mathbf{W}^- on the family \mathcal{H}^* were introduced in [11] in the following way.

The collection $\mathcal{J}^+ = \{G^+ \mid G \in \mathcal{J}\}$ is a basis for the topology \mathbf{W}^+ on \mathcal{H}^* , while \mathbf{W}^- is defined by the collection $\mathcal{J}^- = \{G^- \mid G \in \mathcal{J}\}$. Its basis elements are of the form $G_1^- \cap \cdots \cap G_n^-$ where $G_i \in \mathcal{J}$ for $1 \leq i \leq n, n \in \mathbb{N}$.

We introduce the *generalized Vietoris topology* on \mathcal{H}^* (and in the same way on $\mathbf{A}(X)$) as $\mathbf{W} = \mathbf{W}^+ \vee \mathbf{W}^-$. Its basis elements are of the form

 $G^+ \cap (\bigcap_{i=1}^n G_i^-)$ where $G, G_1, \ldots, G_n \in \mathcal{J}$, for which we use the notation

 $\langle G; G_1, \ldots, G_n \rangle = \{ H \in \mathcal{H}^* \mid H \subset G \text{ and } H \cap G_i \neq \emptyset \text{ for } i = 1, \ldots, n \}.$ Without loss of generality we suppose that $G_i \subset G$ for $i = 1, \ldots, n$.

On $\mathbf{A}(X)$ (and its subcollection \mathcal{H}^*) the following holds $\mathbf{V} \subset \mathbf{W} \subset \mathbf{V}^{\#}$.

When (X, u) is a topological space $\mathbf{V} = \mathbf{W} = \mathbf{V}^{\#}$ all definitions considered in this paper coincide with the corresponding topological ones.

Example 1. Let (X, \mathcal{T}) be a topological space and $u = cl_{\theta}$ be the θ -closure operator in (X, \mathcal{T}) . $(x \in cl_{\theta}(A)$ if each closed neighbourhood of x intersects A.) θ -open sets (X, \mathcal{T}) form the topology $\mathcal{T}(\tilde{u})$, while the semi-regularization topology of \mathcal{T} , whose basis is the family of regular open sets in (X, \mathcal{T}) , is the topology $\mathcal{T}(\tilde{u})$. (cl_{θ} is a Kuratowski closure operator if and only if (X, \mathcal{T}) is a regular space.) By [8], Corollary 1, Proposition 5 and Theorem 2, connectedness and weak local connectedness are shared by the spaces (X, \mathcal{T}_s) , (X, cl_{θ}) and $(X, \mathcal{T}_{\theta})$, while local connectedness of (X, \mathcal{T}_s) implies that of (X, cl_{θ}) .

In particular, let (X, \mathcal{T}) be the digital line and (X, u) its θ -closure space $(\mathbb{Z}, cl_{\theta})$. (See [8], Example 4.) A basis for the topology \mathcal{T} is $\mathcal{B} = \{\{2m - 1\} | m \in \mathbb{Z}\} \cup \{\{2m - 1, 2m, 2m + 1\} | m \in \mathbb{Z}\}$. Since every basis element is regularly open, $\mathcal{T}_s = \mathcal{T}$. The only θ -open sets are the empty set and \mathbb{Z} , so the space $(\mathbb{Z}, \mathcal{T}_{\theta})$ is indiscrete. Thus the spaces (X, u) and (X, \tilde{u}) are not (strongly) compact, but they are locally (strongly) compact, connected and locally connected. The space (X, \hat{u}) satisfies all the listed properties.

In general, connectedness is not shared by (X, u) and (X, \tilde{u}) . It can be seen from the next simple example.

Example 2. Let $X = \{a, b, c\}, u(\emptyset) = \emptyset, u(\{a\}) = \{a, b\}, u(\{b\}) = \{b, c\}, u(\{c\}) = \{c, a\}, u(\{a, b\}) = u(\{a, c\}) = u(\{b, c\}) = u(X) = X$. Then $\operatorname{int}_u \emptyset = \operatorname{int}_u \{a\} = \operatorname{int}_u \{b\} = \operatorname{int}_u \{c\} = \emptyset, \operatorname{int}_u \{a, b\} = \{b\}, \operatorname{int}_u \{b, c\} = \{c\}, \operatorname{int}_u \{a, c\} = \{a\}, \operatorname{int}_u X = X$. The space (X, \hat{u}) is indiscrete while (X, \tilde{u}) is discrete. The induced topologies \mathbf{V} and $\mathbf{V}^{\#}$ are indiscrete and discrete respectively.

 $\mathcal{H}^* = \{\{a, b\}, \{a, c\}, \{b, c\}, X\}$ and its generalized Vietoris topology

$$\begin{split} \mathbf{W} &= \{ \emptyset, \{X\}, \{X, \{a, b\}\}, \{X, \{a, c\}\}, \{X, \{b, c\}\}, \{X, \{a, b\}, \{a, c\}\}, \{X, \{a, b\}, \{b, c\}\}, \{X, \{a, c\} \{b, c\}\}, \mathcal{H}^* \} . \text{ Thus } (\mathcal{H}^*, \mathbf{W}) \text{ is (hyper)connected, while } (\mathbf{A}(X), \mathbf{W}) \text{ is disconnected since } \{a\}^- \cup \{b\}^- = \{\{a\}, \{b\}, \{a, c\}, \{b, c\}, X\} \end{split}$$

and $\{c\}^+ = \{\{c\}\}\$ form a decomposition of $\mathbf{A}(X)$.

All notions not explained here concerning Čech closure spaces can be found in [1] and [7].

3 Some properties of the hyperspaces of (X, u)

In the sequel all considered spaces are T_1 .

By $\mathbf{C}(X)$ we denote the family of all nonempty compact subsets in (X, \hat{u}) , and by $\mathbf{Q}(X)$ the family of all nonempty closed subsets in $(X, \mathcal{T}(\tilde{u}))$.

Lemma 3. For a space (X, u) the following hold:

(i) A^+ and A^- are closed sets for every $A \in \mathcal{H}$.

(*ii*) cl < G; G₁,..., G_n > \subset < u(G); u(G₁),..., u(G_n) >.

(iii) If $\{U_{\lambda}\}$ is a neighbourhood basis of $x \in X$, then $\{(\operatorname{int}_{u} U_{\lambda})^{+}\}$ is a neighbourhood basis of $\{x\} \in \mathcal{H}^{*}$.

Proof. (i) The statement follows from the equalities: $(A^+)^c \equiv \mathcal{H}^* \backslash A^+ = (A^c)^$ and $(A^-)^c \equiv \mathcal{H}^* \backslash A^- = (A^c)^+$.

(ii) Since $u(G), u(G_1), \ldots, u(G_n) \in \mathcal{H}^*$, the collections $(u(G))^+, (u(G_1))^+, \ldots, (u(G_n))^+$ are closed in $(\mathcal{H}^*, \mathbf{W})$. Thus, $\langle u(G); u(G_1), \ldots, u(G_n) \rangle$ is closed and cl $\langle G; G_1, \ldots, G_n \rangle \subset \langle u(G); u(G_1), \ldots, u(G_n) \rangle$.

For the converse, let $H \in \langle u(G); u(G_1), \ldots, u(G_n) \rangle$ and $\langle U; U_1, \ldots, U_m \rangle$ be a neighbourhood of H, where $U = \operatorname{int}_u A$ and $U_j = \operatorname{int}_u A_j$, $j = 1, \ldots, m$. Then $H \subset U$, $H \cap U_j \neq \emptyset$ for $j = 1, \ldots, m$; $H \subset u(G)$ and $H \cap u(G_i) \neq \emptyset$ for $i = 1, \ldots, n$. There is $x_i \in H \cap u(G_i)$ for each $i \in \{1, \ldots, n\}$, and for the neighbourhood A of x_i , there is a $z_i \in A \cap G_i$. In a similar way, for each $j \in \{1, \ldots, m\}$, there is $y_j \in H \cap U_j$ and for the neighbourhood A_j of y_j , there is a $\hat{z}_j \in A_j \cap G$. The set $K = \{z_i \mid i = 1, \ldots, n\} \cup \{\hat{z}_j \mid j = 1, \ldots, m\} \in \langle A; A_1, \ldots, A_m \rangle \cap \langle G; G_1, \ldots, G_n, \cap A \rangle$.

In fact, cl $< C; C_1, \ldots, C_n > \subset < u(C); u(C_1), \ldots, u(C_n) >$ holds for any nonempty sets $C, C_1, \ldots, C_n, C_i \subset C$.

(iii) Clear. $x \in \operatorname{int}_u U_\lambda \Leftrightarrow \{x\} \in (\operatorname{int}_u U_\lambda)^+$ holds.

57

Proposition 1. For a space (X, u) the following hold: (i) $\mathbf{F}(X)$ is dense in $(\mathcal{H}^*, \mathbf{W})$.

 $(\mathbf{Y}) \mathbf{F}(\mathbf{X}) = (\mathbf{Y}) \mathbf{F}(\mathbf{Y}) \mathbf{F}$

(ii) If (X, u) is T_2 , then $\mathbf{F}_n(X)$ is closed in $(\mathcal{H}^*, \mathbf{W})$ for all $n \ge 1$. (iii) The natural projection $p : (X, u)^n \to (\mathbf{F}_n(X), \mathbf{V})$ defined by $p(x_1, \ldots, x_n) = \{x_1, \ldots, x_n\}$, is continuous.

Proof. (i) For each nonempty open set $\langle G; G_1, \ldots, G_n \rangle$, let $x_i \in G_i, i = 1, \ldots, n$. The set $\{x_1, \ldots, x_n\}$ is finite and belongs to $\langle G; G_1, \ldots, G_n \rangle$.

(ii) For a fixed $n \in \mathbb{N}$, let $H \in \mathcal{H}^* \backslash \mathbf{F}_n$ and x_1, \ldots, x_{n+1} be distinct points in H. Since the space (X, u) is \mathbf{T}_2 , let U_1, \ldots, U_{n+1} be pairwise disjoint neighbourhoods of x_1, \ldots, x_{n+1} , respectively. Let U, be a neighbourhood of H, and $U_i \subset U$, for $i = 1, \ldots, n+1$. (It can be chosen U = X.) Then $< \operatorname{int}_u U$; $\operatorname{int}_u U_1, \ldots, \operatorname{int}_u U_m >$ is a neighbourhood of H, and $< \operatorname{int}_u U$; $\operatorname{int}_u U_1, \ldots, \operatorname{int}_u U_m > \cap \mathbf{F}_n = \emptyset$.

(iii) $(\mathbf{F}_n(X), \mathbf{V})$ is a topological space so the mapping $p : (X^n, v) \to (\mathbf{F}_n(X), \mathbf{V})$ is continuous if and only if the mapping $p : (X^n, \hat{v}) \to (\mathbf{F}_n(X), \mathbf{V})$ is continuous, where \hat{v} is the topological modification of v. Since the topological modification of the product space is the product of topological modifications, p is continuous if and only if it is continuous as the mapping from the *n*th product of the topological space $(X, \mathcal{T}(\hat{u}))$ into $(\mathbf{F}_n(X), \mathbf{V})$, which follows from [6], Proposition 2.4.3. \Box

Proposition 2. (i) If A is dense in (X, u), then $\mathbf{F}(A)$ and $\mathbf{2}^A$ are dense in $(\mathbf{A}(X), \mathbf{V})$.

(ii) For a T_1 space (X, u), the spaces $(\mathbf{2}^X, \mathbf{V})$, $(\mathcal{H}^*, \mathbf{W})$ and $(\mathbf{Q}(X), \mathbf{V}^{\#})$ are T_1 .

(iii) If (X, u) is regular, then $(\mathbf{2}^X, \mathbf{W})$ is T_2 .

Proof. (i) If A is dense in (X, u), then A is dense in (X, \hat{u}) and the statement follows from definitions and Corollary 5.2.4 of [6].

(ii) Let $H_1, H_2 \in \mathcal{H}^*$, $H_1 \neq H_2$ and $x_1 \in H_1 \setminus H_2$. Then $H_1 \in (H_2^c)^- = \mathcal{W}_1$ holds and $H_2 \notin \mathcal{W}_1$. If there is $x_2 \in H_2$, then $H_2 \in (H_1^c)^- = \mathcal{W}_2$ and $H_1 \notin \mathcal{W}_2$ holds. If $H_2 \subset H_1$, then $H_2 \in (\{x_1\}^c)^+ = \mathcal{W}_2$ and $H_1 \notin \mathcal{W}_2$.

(iii) Let $A_1, A_2 \in \mathbf{2}^X$, $A_1 \neq A_2$, $A_1 = u(A_1)$, $A_2 = u(A_2)$ and $x_1 \in A_1 \setminus A_2$. By regularity of (X, u) there are disjoint neighbourhoods U of x and V of A_2 . Hence $x \in \operatorname{int}_u(U)$ and $A_2 \subset \operatorname{int}_u(V)$ imply $A_1 \in (\operatorname{int}_u(U))^- = \mathcal{W}_1$, $A_2 \in (\operatorname{int}_u(V))^+ = \mathcal{W}_2$ and $\mathcal{W}_1 \cap \mathcal{W}_2 = \emptyset$.

Proposition 3. A space (X, u) is connected if and only if its nth product (X^n, v) , (n = 1, 2, ...), is connected.

Proof. The spaces (X, u) and its product (X^n, v) are connected if and only if their topological modification (X, \hat{u}) and (X^n, \hat{v}) are connected. Since (X^n, \hat{v}) is the *n*th product of (X, \hat{u}) , the statement follows.

Proposition 4. If σ is a connected collection in $(\mathbf{A}(X), \mathbf{W})$, and one of whose elements is connected, then $E = \bigcup \{S \in \sigma\}$ is connected.

Proof. Let $S_0 \in \sigma$ be a connected subset. If $E = \bigcup \{S \in \sigma\}$ is not connected, then $E = A \cup B$ where A and B are disjoint, nonempty and open-and-closed. Since S_0 is connected, $S_0 \subset A$ or $S_0 \subset B$ holds. Suppose $S_0 \subset A$; then $S_0 \in A^+$. It follows that A^+ and B^- form a decomposition of σ .

Theorem 1. Let $\mathbf{F}(X) \subset \sigma \subset \mathbf{A}(X)$.

(i) If one of the spaces (X, u), $(\mathbf{F}(X)_n, \mathbf{V})$, $n \in \mathbb{N}$, or (σ, \mathbf{V}) is connected, then all of them are connected.

(ii) Connectedness of one of the spaces $(\mathbf{F}(X)_n, \mathbf{W}), n \in \mathbb{N}$, or (σ, \mathbf{W}) implies connectedness of (X, u).

Proof. (i) Follows by Lemma 1 and Theorem 4.10 of [6].

(ii) In a similar way, by Lemma 1, Proposition 4 and the fact that $\mathbf{V} \subset \mathbf{W}$.

Note that connectedness of all $(\mathbf{F}(X)_n, \mathbf{W}), n \in \mathbb{N}$, implies connectedness of $(\mathbf{F}(X), \mathbf{W})$ and hence of (σ, \mathbf{W}) .

Proposition 5. (Feeble) local connectedness of (X, u) implies (feeble) local connectedness of (σ, \mathbf{V}) , where $\mathbf{F}(X) \subset \sigma \subset \mathbf{C}(X)$.

Proof. By Lemma 2, (feeble) local connectedness of (X, u) implies (feeble) local connectedness of its topological modification (X, \hat{u}) . Local connectedness of (σ, \mathbf{V}) follows by applying Theorem 4.12 in [6]. We modify the same proof for feeble local connectedness.

Proposition 6. (i) If $(\mathcal{H}^*, \mathbf{W})$ is (countably) compact, then (X, u) is strongly (countably) compact.

(ii) The space $(\mathbf{2}^X, \mathbf{V})$ is compact if and only if (X, \hat{u}) is compact.

(iii) The space $(\mathbf{Q}(X), \mathbf{V}^{\#})$ is compact if and only if (X, \tilde{u}) is compact, that is, (X, u) is strongly compact.

Proof. (i) Let $\{G_{\alpha}\}$ be a (countable) interior cover of X. Then $\cup \{\operatorname{int}_{u} G_{\alpha}\} = X$. The collection $\{(\operatorname{int}_{u} G_{\alpha})^{-}\}$ is a (countable) open cover of \mathcal{H}^{*} and there is a finite subcover $\{(\operatorname{int}_{u} G_{\alpha_{i}})^{-} | i = 1, \ldots m\}$. Hence $\{G_{\alpha_{i}}, | i = 1, \ldots m\}$ is a finite interior cover of X, a subcover of $\{G_{\alpha}\}$.

(ii) and (iii) follow by [6], Theorem 4.2.

The next two statements are a weaker form of [6], Teorem 2.5.

Proposition 7. If C is a compact collection in $(\mathcal{H}^*, \mathbf{W})$ consisting of strongly compact elements, then $K = \bigcup \{C \in C\}$ is compact.

Proof. Let $\{G_{\alpha}\}$ be an interior cover of K. For each $C \in \mathcal{C}$ there is a finite subcollection $\{G_{C,1}, \ldots, G_{C,n(C)}\}$ whose interiors cover C. Put $G_C = \bigcup\{G_{C,1}, \ldots, G_{C,n(C)}\}$. Then $\{< \operatorname{int}_u G_C; \operatorname{int}_u G_{C,1}, \ldots, \operatorname{int}_u G_{C,n(C)} > \}$, where $C \in \mathcal{C}$, is an open cover of \mathcal{C} , so there is a finite subcover $\{< \operatorname{int}_u G_{C_i}; \operatorname{int}_u G_{C_i,1}, \ldots, \operatorname{int}_u G_{C_i,n(C_i)} > | i = 1, \ldots, m\}$. The collection $\{G_{C_i}, G_{C_i,1}, \ldots, G_{C_i,n(C_i)} | i = 1, \ldots, m\}$ is a finite cover of K, a subcollection of $\{G_{\alpha}\}$.

Proposition 8. If (X, u) is a regular space and C is a compact collection in $(\mathcal{H}^*, \mathbf{W})$ consisting of closed elements, then $K = \bigcup \{C \in C\}$ is closed.

Proof. Let $C = \{A_{\lambda} = u(A_{\lambda}) | \lambda \in \Lambda\}$. Let $x \in u(K)$. By regularity, for each neighbourhood U of x there is a neighbourhood V of x such that $x \in V \subset u(V) \subset U$ holds. Then $x \in u(K)$ implies $V \cap K \neq \emptyset$, hence there is a $\lambda \in \Lambda$ such that $u(V) \cap A_{\lambda} \neq \emptyset$, i. e. $A_{\lambda} \in (u(V))^-$. By Lemma 3(i) the collection $C \cap (u(V))^-$ is closed in C, and $\{C \cap (u(V))^- | V \in \mathcal{N}(x)\}$ has the finite intersection property since $V_1, \ldots, V_n \in \mathcal{N}(x)$ imply $V_1 \cap \ldots \cap V_n \in \mathcal{N}(x)$. Since $(\mathcal{C}, \mathbf{W})$ is compact, there is a nonempty subcollection $\mathcal{E} \subset C$. For each $E \in \mathcal{E}, E \in \cap\{(u(V))^- | V \in \mathcal{N}(x)\}$ implies $E \cap U \neq \emptyset$ for each $U \in \mathcal{N}(x)\}$, hence $x \in u(E) = E$. Since $E \subset K, x \in K$. Hence u(K) = K.

References

- E. Čech, *Topological Spaces*, Revised edition by Z. Frolík and M. Katětov, Czechoslovak Acad. of Sciences, Prague, 1966.
- [2] D.N. Georgiou, A few remarks concerning θ-continuous functions and topologies on function spaces, J. Inst. Math. Comput. Sci. (Math. Ser.)12 (1999), 129–138.
- [3] D.N. Georgiou and B.K. Papadopoulos, Strongly θ-continuous functions and topologies on function spaces, Appl. Categ. Structures, 2000, 433–444.
- [4] D.N. Georgiou and B.K. Papadopoulos, Weakly continuous, weakly θcontinuous, super-continuous and topologies on function spaces, Sci. Math. 53 (2001).
- [5] Lj.D.R. Kočinac, Selection principles in hyperspaces, in: Lj.D.R. Kočinac (Ed.), Selection Principles and Covering Properties in Topology, Quad. Mat. 18 (2006), 157–194.
- [6] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- [7] M. Mršević, Proper and admissible topologies in closure spaces, Indian J. Pure Appl. Math. 36 (2005), 613–627.
- [8] M. Mršević and D. Andrijević, On θ-conectedness and θ-closure spaces, Topology Appl. 123 (2002), 157–166.
- M. Mršević and M. Jelić, Selection principles and hyperspace topologies in closure spaces, J. Korean Math. Soc. 43 (2006), 1099–1114.
- [10] M. Mršević and M. Jelić, Selection principles, γ -sets and α_i -properties in Čech closure spaces, Topology Appl. **155** (2008), 1947–1958.
- [11] M. Mršević and M. Jelić, Selection principles in hyperspaces with generalized Vietoris topologies, Topology Appl. 156 (2008), 124–129.

Addresses:

Dimitrije Andrijević

Poljoprivredni fakultet, University of Belgrade, Nemanjina 6, 11081 Beograd–Zemun, Serbia

E-mail: adimitri@agrif.bg.ac.rs

Milena Jelić

Poljoprivredni fakultet, University of Belgrade, Nemanjina 6, 11081 Beograd–Zemun, Serbia

E-mail: milena@agrif.bg.ac.rs

Mila Mršević

Faculty of Mathematics, University of Belgrade, Studentski tr
g $16,\,11000$ Beograd, Serbia

E-mail: mrsevic@matf.bg.ac.rs