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ANALYTIC EQUIVALENCE OF PLANE CURVE
SINGULARITIES yn + xαy + xβA(x) = 0

V. Stepanović and A. Lipkovski

Abstract. There are not many examples of complete analytical classification

of specific families of singularities, even in the case of plane algebraic curves.

In 1989, Kang and Kim published a paper on analytical classification of plane

curve singularities yn+a(x)y+b(x) = 0, or, equivalently, yn+xαy+xβA(x) = 0
where A(x) is a unit in Ct{x}, α and β are integers, α � n − 1 and β � n.

The classification was not complete in the most difficult case α
n−1

= β
n

. In

the present paper, the classification is extended also in this case, the proofs
are improved and some gaps are removed.

1. Introduction

In the theory of algebraic curves, the relationship between topological and
analytical classifications of local germs is an old, interesting, and sometimes rather
involved question [BK]. In the literature there are not many examples of curves
and curve families with complete answer to this question. In 1989 Kang and Kim
published a paper about topological and analytic classification of germs of plane
curve singularities f(x, y) = 0 defined by a square-free polynomial f(x, y) = yn +
a(x)y + b(x) of multiplicity n [KK]. The problem is equivalent to classification of
singularities defined by yn + xαy + xβA(x), where A(x) is a unit in C{x} (i.e.,
A(0) = A0 �= 0), α and β are integers, α � n − 1 and β � n. Recall that, if the
singularity germs at (0, 0) defined by f = 0 and g = 0 are analytically equivalent
[BK], we shall write f ≈ g; else we shall write f �≈ g. There are two cases depending
on whether α

n−1 �= β
n (case A) or α

n−1 = β
n (case B). The difference between cases

A and B can be easily seen on Newton diagrams of these singularities [BK], [L] (see
the figure).

If α
n−1 < β

n the germ is reducible, if α
n−1 > β

n it is irreducible. Kang and Kim
found a list of singularities representing all analytic classes in the case A and partly
in the case B. If α

n−1 �= β
n , one can prove that f ≈ yn + xαy + xβ . However, in the

case B there are two possibilities depending on the y-discriminant D(f) = R(f, f ′)
of f . This discriminant is of the form
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Figure

D(f) = cx(n−1)β
[(

− 1
n

)n

−
( A(x)

n − 1

)n−1]
.

If A(x) = A0 + Arx
r + · · · (A0 · Ar �= 0), then

D(f) = cx(n−1)β
[
D0 −

( A0

n − 1

)n−2

Arx
r − · · ·

]
,

where

D0 =
((

− 1
n

)n

−
( A0

n − 1

)n−1)
.

Since f is square-free, D(x) �= 0. Now if D0 = 0, then D(f) = x(n−1)β+ru(x)
where u(x) is a unit in C{x}, and for each r ∈ N there is a single analytic class
represented by the singularity yn − nxαy + (n − 1)xβ + xβ+r = 0 [KK]. If D0 �= 0,
then D(f) = x(n−1)βu(x) where u(x) is a unit in C{x}. In the present paper we
analyze this generic case B, and obtain results stated below.

Let M(f) be the ideal in C{x, y} generated by f , x∂f
∂x , y ∂f

∂x , x∂f
∂y and y ∂f

∂y , and
let dim C{x, y}/M(f) be the dimension of the algebra C{x, y}/M(f) as a vector
space over C.

Theorem 1.1. Let α
n−1 = β

n . If 1 � r < β
n , then f ≈ yn + xαy + A0x

β + xβ+r

and dim C{x, y}/M(f) = β
n

(
n2 − 2n + 2

) − n + r + 4. For different r we have
different analytic classes.

Theorem 1.2. Let α
n−1 = β

n , n � 4 and let the discriminant of f be of the form
D(f) = x(n−1)βu(x), where u(x) is a unit in C{x} (generic case B). If 1 � r < β

n ,
then f �≈ yn +xαy + cxβ for all c ∈ C. The same holds for n = 3, if 1 � r < β

n − 1.

If we omit the condition r < β
n the situation becomes more complex, especially

the calculation of the dimension d. Nevertheless we have the following.

Theorem 1.3. Let α
n−1 = β

n and r � 1. Then f ≈ yn + xαy + A0x
β + xβ+r.

Two such singularities (with the same r) are analytically isomorphic yn + xαy +
cxβ + xβ+r ≈ yn + xαy + dxβ + xβ+r if and only if cn−1 = dn−1.

The question of analytical equivalence for different r � β
n remains open.
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2. Results and Proofs

For any series f ∈ C{x, y} let M(f) denote the ideal
(
f, y ∂f

∂y , x∂f
∂y , y ∂f

∂x , x∂f
∂x

)
in C{x, y}. We shall use the following standard fact.

Theorem 2.1 (see [MY]). f ≈ g if and only if C{x, y}/M(f) and C{x, y}/M(g)
are isomorphic as C-algebras.

Throughout the paper we use the following notations. Let f = yn + xαy +
xβA(x) ∈ C{x, y}, where A(0) = A0 �= 0, α and β are integers, α � n − 1 and
β � n. We shall consider the case B (see Introduction) where α

n−1 = β
n . Then

α = k(n − 1) and β = kn for some k ∈ N, so f = yn + xk(n−1)y + A(x)xkn. Let
r ∈ N0 be the multiplicity of A(x) − A0 i.e., A(x) = A0 + Arx

r + · · · with Ar �= 0.
Let us describe the algebra C{x, y}/M(f). First we describe the ideal M(f) =(

f, y ∂f
∂y , x∂f

∂y , y ∂f
∂x , x∂f

∂x

)
. Note that ky ∂f

∂y + x∂f
∂x − knf = xkn+1A′(x) ∈ M(f). We

have to consider three essentially different cases: (i) r = 0; (ii) 1 � r < k; and (iii)
r � k.

Case (i) r = 0. Here A(x) ≡ A0 �= 0 and the y-discriminant of f is

D(f) = cxkn(n−1)
((

− 1
n

)n

−
( A0

n − 1

)n−1)
.

Since it is �= 0, we have

(2.1) (A0)n−1 �=
(
− 1

n

)n

(n − 1)n−1.

The theorem of [KK] gives the criterion for analytic equivalence of two singularities
of the considered type.

Theorem 2.2. Let n � 4 and c ∈ C be such that cn−1 �= (− 1
n )n(n − 1)n−1.

Then for d ∈ C we have yn+xαy+dxβ ≈ yn+xαy+cxβ, if and only if cn−1 = dn−1.

Though this gives complete analytic classification in the case (i), in order to
compare it with the two remaining types, we shall describe the algebra C{x, y}/M(f).
One has

M(f) =
(
nyn + xk(n−1)y, nyn−1x + xk(n−1)+1,

(n − 1)xk(n−1)y + nxknA0, (n − 1)xk(n−1)−1y2 + nA0x
kn−1y, f

)
.

Here f could be omitted, since

nf = (nyn + xk(n−1)y) +
{
(n − 1)xk(n−1)y + nA0x

kn
} ∈

(
y
∂f

∂y
, x

∂f

∂y
, y

∂f

∂x
, x

∂f

∂x

)
.

We have 1
ky ∂f

∂x · yn−3 = (n − 1)xkn−k−1yn−1 + nA0x
kn−1yn−2 ∈ M(f), so

(2.2) xk(n−1)−1yn−1 ≡ − nA0

n − 1
xkn−1yn−2 mod M(f).
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Also, 1
kx∂f

∂x = (n − 1)xk(n−1)y + nA0x
kn ∈ M(f), and therefore xk(n−1)y ≡

−nA0
n−1xkn mod M(f). Multiplying with −nA0

n−1xk−1yn−3, (−nA0
n−1 )2x2k−1yn−4,. . . ,

(−nA0
n−1 )n−2x(n−2)k−1 respectively, we obtain:

− nA0

n − 1
xkn−1yn−2 ≡

(
− nA0

n − 1

)2

xkn+k−1yn−3(2.3)

≡ · · · ≡
(
− nA0

n − 1

)n−1

x2kn−2k−1 mod M(f).

Together with (2.2) this gives

(2.4) xk(n−1)−1yn−1 ≡
(
− nA0

n − 1

)n−1

x2kn−2k−1 mod M(f).

On the other hand,
1
k

x
∂f

∂y
· xk(n−1)−2 = nyn−1xk(n−1)−1 + x2kn−2k−1 ∈ M(f), so

we have

(2.5) xk(n−1)−1yn−1 ≡ − 1
n

x2kn−2k−1 mod M(f).

From (2.4) and (2.5) we have(
− nA0

n − 1

)n−1

x2kn−2k−1 ≡ − 1
n

x2kn−2k−1 mod M(f)

and

(2.6)
[(

− nA0

n − 1

)n−1

+
1
n

]
x2kn−2k−1 ≡ 0mod M(f).

From (2.1) it follows that x2kn−2k−1 ∈ M(f). Therefore the monomials xkn−1yn−2,
xkn+k−1yn−3, xkn+2k−1yn−4,. . . , x2kn−3k−1y are in M(f), and so is xk(n−1)−1yn−1

(see (2.3) and (2.4)).
From the definition of M(f) it follows that yn ≡ − 1

nxk(n−1)y mod M(f), there-
fore y2n−2 ≡ − 1

nxk(n−1)yn−1 mod M(f), and

(2.7) y2n−2 ∈ M(f).

Multiplying yn ≡ − 1
nxk(n−1)y mod M(f) with xk(n−2)−1, xk(n−3)−1y,. . . , xk−1yn−3

respectively, we obtain that monomials xk(n−2)−1yn, xk(n−3)−1yn+1,. . . , xk−1y2n−3

are congruent with − 1
nx2kn−3k−1y, − 1

nx2kn−4k−1y2,. . . , − 1
nxkn−1yn−2 respectively,

so:

(2.8) xk(n−2)−1yn, xk(n−3)−1yn+1, . . . , xk−1y2n−3 ∈ M(f).

Now we describe the algebra C{x, y}/M(f). It is finitely generated as a vector space
over C, for instance by the set of monomials

{
xαyβ | α < 2kn − 2k − 1;β < 2n − 2

}
(for simplicity we identify monomials with their congruence classes modM(f)). It
is easy to see that all linear dependence relations in C{x, y}/M(f) between these
monomials are finite linear combinations of the expressions obtained by multiply-
ing x∂f

∂y , y ∂f
∂y , x∂f

∂x , y ∂f
∂x with different xpyq (p, q ∈ N0). In such way we obtain

linear combinations of monomials xαyβ and xα+lkyβ−l for some α and β, i.e.,
monomials xαyβ and xα′

yβ′
for which α + kβ = α′ + kβ′, that lie in the set
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Ic :=
{
xαyβ | α + kβ = c

}
. So the algebra C{x, y}/M(f) splits as a vector space

over C into direct sums of vector spaces Vc generated by Ic, 0 � c < 2kn − 2k − 1,
because Ic = {0} for c � 2kn−2k−1 (this follows from (2.3), (2.4), (2.7) and (2.8):

C{x, y}/M(f) =
⊕

0�c�2kn−2k−1

Vc.

Lemma 2.1. The number 2kn−2k−1 is the least number a such that xa ∈ M(f).

Proof. Suppose that xa ∈ M(f) for some a < 2kn−2k−1; then x2kn−2k−2 ∈
M(f). But this means that x2kn−2k−2 is, in C{x, y}, equal to a linear combination
of the expressions of the type xγyδ ∂f

∂y , xαyβ ∂f
∂x , where γ2 +δ2 �= 0, α2 +β2 �= 0,

γ + kδ = kn − k − 2 and α + kβ = kn − 2k − 1. The linear combination
must contain x2kn−2k−2 + nxkn−k−2yn−1 or nx2kn−2k−2 + (n− 1)x2kn−3k−2y. But
the expression x2kn−2k−2 + nxkn−k−2yn−1 could not appear with any nonzero
coefficient, because xkn−k−2yn−1 could not be eliminated since it does not ap-
pear in any other expression above. So the linear combination must contain
c[nx2kn−2k−2 +(n−1)x2kn−3k−2y] with c �= 0, and x2kn−3k−2y must be found in at
least one of the two remaining terms which contain x2kn−3k−2y: x2kn−3k−2y +
nxkn−2k−2yn or nx2kn−3k−2y + (n − 1)x2kn−4k−2y2. Again xkn−2k−2yn is not
found in any other expression, so nx2kn−3k−2y + (n− 1)x2kn−4k−2y2 must be con-
tained in a linear combination with a nonzero coefficient etc. We continue by
induction, and finally we get that the term xkn+k−2yn−3 which is contained in
nxkn+2k−2yn−4 + (n − 1)xkn+k−2yn−3 could be eliminated only by the expression
nxkn+k−2yn−3 + (n− 1)xkn−2yn−2 taken with the appropriate nonzero coefficient.
But then we get xkn−2yn−2 with a nonzero coefficient, and it is not found in any
other of the above expressions. So it can not be eliminated, and we have a contra-
diction. �

This fact will help us to distinguish analytic types of the expressions in the
case (i) from those found in the sequel.

Case (ii) 1 ��� r < k. Let 1 � r < k. We have

M(f) � ky
∂f

∂y
+ x

∂f

∂x
− knf = xkn+1A′(x) = rArx

kn+r+(r+1)Ar+1x
kn+r+1+· · ·

= xkn+ru(x),

where u(x) is a unit, so xkn+r ∈ M(f) and in the generating set of M(f) we can
replace f with xkn+r. We have (nyn−1x+xk(n−1)+1)xk+r−1 = nyn−1xk+r+xkn+r ∈
M(f), and we get yn−1xk+r ∈ M(f) because xkn+r ∈ M(f). Now x∂f

∂x · xr =
k(n − 1)xk(n−1)+ry + xkn+r(. . . ), so we get xk(n−1)+ry ∈ M(f). Since r < k,
xkn−1y, xkny ∈ M(f), so we have

y
∂f

∂x
= k(n − 1)xk(n−1)−1y2 + knxkn−1yA(x) + xknyA′(x)

≡ k(n − 1)xk(n−1)−1y2(mod M(f)),



74 STEPANOVIĆ AND LIPKOVSKI

and we get xk(n−1)−1y2 ∈ M(f). If we add xk(n−1)+ry and xk(n−1)−1y2 to the
generating set of the ideal M(f), we can omit y ∂f

∂x . Also,

yf = yn+1 + xk(n−1)y2 + A(x)yxkn ∈ M(f),

so yn+1 ∈ M(f). We also have y ∂f
∂y · xr = nynxr + xk(n−1)+ry ∈ M(f), therefore

ynxr ∈ M(f). Finally,

xf ′
x = k(n− 1)xk(n−1)y +knxknA(x)+xkn+1A′(x) ≡ k(n− 1)xk(n−1)y +knxknA0,

because xkn+r ∈ M(f), therefore we can take k(n− 1)xk(n−1)y + knxknA0 instead
of xf ′

x in the generating set of M(f). Finally, we have

M(f) =
(
yn+1, ynxr, yn−1xk+r, xk(n−1)−1y2, xk(n−1)+ry, xkn+1,

nyn + xk(n−1)y, nyn−1x + xk(n−1)+1, (n − 1)xk(n−1)y + nxknA0

)
.

The ideal M(f) depends only on A0 and r, and so does the algebra C{x, y}/M(f).
Finally we have: f ≈ yn + xαy + xβ (A0 + xr).

Now we can prove the following theorem.

Theorem 2.3. If 1 � r < k, then f ≈ yn + xαy + A0x
β + xβ+r. For different

r we get different analytic classes, because

dim C{x, y}/M(f) = k
(
n2 − 2n + 2

) − n + r + 4.

Proof. Algebra C{x, y}/M(f) is generated as a vector space over C by the
following monomials:

1 y y2 . . . yn−2 yn−1 yn

. . . . . . . . . . . . . . . . . . . . .
xr xry xry2 . . . xryn−2 xryn−1

. . . . . . . . . . . . . . . . . .
xk+r xk+ry xk+ry2 . . . xk+ryn−2

. . . . . . . . . . . . . . .
xk(n−1)−2 xk(n−1)−2y xk(n−1)−2y2 . . . xk(n−1)−2yn−2

xk(n−1)−1 xk(n−1)−1y
. . . . . .

xkn+r−k−1 xkn+r−k−1y
xkn+r−k

. . .
xkn+r−1 .

The total number of monomials in this generating set is

(n+1)r+kn+(kn−2k−1−r) · (n−1)+(r+1)2+k = k(n2−2n+3)−n+4r+3.

On the basis of our previous considerations,

M(f) =
(
xkn+r, xkn−k+ry, xkn−k−1y2, xk+ryn−1, xryn, yn+1,

nyn + xk(n−1)y, nyn−1x + xk(n−1)+1, (n − 1)xk(n−1)y + nxknA0

)
.
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Multiplying xf ′
y with monomials 1, x,. . . ,xk+r−2 respectively, we obtain k + r − 1

linear relations between generating monomials

nyn−1x + xk(n−1)+1 ≡ · · · ≡ nyn−1xk+r−1 + xkn+r−1 ≡ 0mod M(f).

Multiplying yf ′
y with 1, x,. . . , xr−1 we obtain another r linear relations

nyn + xk(n−1)y ≡ · · · ≡ nynxr−1 + xk(n−1)+r−1y ≡ 0mod M(f).

Finally, multiplying (n−1)xk(n−1)y+nxknA0 with 1,x,. . . , xr−1 we get the following
r linear relations between the generating monomials

(n−1)xk(n−1)y+nxknA0 ≡ · · · ≡ (n−1)xk(n−1)+r−1y+nxkn+r−1A0 ≡ 0mod M(f).

It is easy to see that these k + 3r − 1 linear relations are independent, so

dim C{x, y}/M(f) = k(n2 − 2n + 3) − n + 4r + 3 − (k + 3r − 1)

= k(n2 − 2n + 2) − n + r + 4. �

On the basis of the description of algebra C{x, y}/M(f) given in this proof, and
the description of the same algebra in the case (i), we can now prove the following
theorem.

Theorem 2.4. Let 1 � r < k and n � 4. If the y-discriminant of f is of the
form D(f) = x(n−1)βu(x), where u(x) is unit in C{x}, then yn + xαy + xβA(x) �≈
yn + xαy + cxβ for every c ∈ C. The same holds for n = 3, if we replace the
condition 1 � r < k with the condition 1 � r < k − 1.

Proof. Consider the degrees of the finite number of (classes of) monomials
which generate the algebra C{x, y}/M(f). They do not exceed the biggest of the
following numbers: n+r−1, k+r−1+n−1, k(n−1)+n−4, kn+r−k, kn+r−1,
which is, in the case r < k and n � 4, less than 2kn−2k−2 (also in the case n = 3
and r < k − 1). Therefore, every element of C{x, y}/M(f) is of nilpotent degree
< 2k(n − 1) − 1. But in the case (i) where A(x) ≡ c �= 0, we have an element x of
nilpotent degree = 2k(n − 1) − 1. Therefore, C{x, y}/M(f) in the case (i) is not
isomorphic to the same algebra in the case (ii). To complete the proof, we should
prove that yn + xαy + xβA(x) �≈ yn + xαy + cxβ for c = 0. If c = 0, the ideal M(f)
is

M
(
yn + xk(n−1)y

)
=

(
yn, xk(n−1)y, xk(n−1)−1y2, nyn−1x + xk(n−1)+1

)
.

Since xk(n−1)−1y2 ∈ M(f), we have that nyn−1xk(n−1)−1 ∈ M(f). On the other
hand,(

nyn−1x + xk(n−1)+1
)
xk(n−1)−2 = nyn−1xk(n−1)−1 + x2k(n−1)−1 ∈ M(f),

so x2k(n−1)−1 ∈ M(f). We shall prove that 2k(n−1)−1 is the least number α such
that xα ∈ M(f). Let xα ∈ M(f). In the same way as before, we conclude that xα

may be obtained as a linear combination of expressions we obtain multiplying x∂f
∂y ,

y ∂f
∂y , x∂f

∂x , y ∂f
∂x with xpyq for different p, q ∈ N0. But the single expression where xα

appears is xα−k(n−1)−1
(
nyn−1x + xk(n−1)+1

)
= nyn−1xα−k(n−1) + xα, and only if

α−k(n−1)−1 � 0, that is α � k(n−1)+1. The expression nyn−1xα−k(n−1) +xα
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must appear with the coefficient 1, so the monomial yn−1xα−k(n−1) will appear
with a nonzero coefficient in another expression in the linear combination. But the
only way we can obtain yn−1xα−k(n−1) is xk(n−1)y ·xα−2k(n−1)yn−2 or xk(n−1)−1y2 ·
xα−2k(n−1)+1yn−3, so it is necessary that α � 2k(n−1)−1. Therefore, the algebra
C{x, y}/M (

yn + xk(n−1)y
)

contains an element of the nilpotent degree 2k(n−1)−1,
and it is not isomorphic to the algebra C{x, y}/M(f) in the case (ii). So we have
proved that, under the given conditions yn + xαy + xβA(x) �≈ yn + xαy + cxβ for
every c ∈ C. �

Case (iii) r ��� k. Let r � k. In the same way as in the case (ii) we prove that
xkn+r ∈ M(f), xkn−k+r ∈ M(f), and that we can replace f with xkn+r in the set
of generators of M(f).

Since xkn−k+ry ∈ M(f), we have that xkn+r−1y ∈ M(f), and therefore

y
∂f

∂x
= k(n − 1)xk(n−1)−1y2 + knxkn−1yA(x) + xknyA′(x) = · · ·

≡ k
[
(n − 1)xk(n−1)−1y2 + nxkn−1yA0

]
mod M(f),

so if we add xkn−k+ry and (n − 1)xk(n−1)−1y2 + nxkn−1yA0 to the generating set
of M(f), we can omit y ∂f

∂x . Also,

x
∂f

∂x
= k(n − 1)xk(n−1)y + knxknA(x) + xknyA′(x) = · · ·

≡ k
[
(n − 1)xk(n−1)y + nxknA0

]
mod M(f),

so we may take (n − 1)xk(n−1)y + nxknA0 instead of x∂f
∂x in the generating set of

the ideal M(f). Finally,

M(f) =
(
xk(n−1)+ry, xkn+r, nyn + xk(n−1)y, nyn−1x + xk(n−1)+1,

(n − 1)xk(n−1)y + nxknA0, (n − 1)xk(n−1)−1y2 + nxkn−1yA0

)
.

Notice that the ideal M(f) depends only on A0, so in this case we also have
f ≈ yn +xαy+xβ (A0 + xr) = yn +xαy+A0x

β +xβ+r. Together with the previous
case, this gives the following theorem. Recall that if p, q ∈ N, the (p, q)-quasidegree
of the monomial aαβxαyβ (aαβ ∈ C) is the number α

p + β
q , and polynomial f is

(p, q)-quasihomogeneous, if it is a sum of monomials of the same (p, q)-quasidegree.

Theorem 2.5. Let r � 1. We have f ≈ yn + xαy + A0x
β + xβ+r. Also,

yn + xαy + cxβ + xβ+r ≈ yn + xαy + dxβ + xβ+r if and only if cn−1 = dn−1.

Proof. The second assertion remains to be proved. Let cn−1 = dn−1. If c = 0,
then d = 0, and there is nothing to be proved. Let c �= 0. Then

(
d
c

)n
= d

c , and we
have

yn + xαy + cxβ + xβ+r =
c

d

(d

c
yn + xα · d

c
y + dxβ +

d

c
xβ+r

)

=
c

d

[(d

c
y
)n

+ xα
(d

c
y
)

+ dxβ +
d

c
xβ+r

]
.
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Let Φ :
(
C2, 0

) → (C2, 0) be given by Φ(x, y) = (x, d
c y). It maps the singularity

yn + xαy + cxβ + xβ+r = 0 into yn + xαy + dxβ + d
c xβ+r = 0. So

yn + xαy + cxβ + xβ+r ≈ yn + xαy + dxβ +
d

c
xβ+r ≈ yn + xαy + dxβ + xβ+r.

Now suppose that yn+xαy+γxβ+xβ+r ≈ yn+xαy+δxβ+xβ+r; it means that there
is an isomorphism Φ :

(
C2, 0

) → (
C2, 0

)
, such that u · (yn + xαy + γxβ + xβ+r) =

(yn + xαy + δxβ + xβ+r) ◦ Φ, where u ∈ C{x, y} is a unit. Let Φ (x, y) = (L,H),
where H = H (x, y) = ay + bx + H2 + · · · and L = L (x, y) = cy + dx + L2 + · · · .
Hn and Ln are homogeneous polynomials of the homogeneous degree n. Now we
have

(ay+bx+H2+· · · )n+(cy+dx+L2+· · · )α(ay+bx+H2+· · · )
+δ(cy+dx+L2+· · · )β +(cy+dx+L2+· · · )β+r = u · (yn+xαy+γxβ +xβ+r).

(2.9)

(i) Let k = 1, then taking terms of the degree n in (2.9), we get

(ay + bx)n + (cy + dx)n−1(ay + bx) + δ(cy + dx)n = u0 · (yn + xn−1y + γxn).

This implies that yn + xn−1y + γxn ≈ yn + xn−1y + δxn. By theorem 2.2 we have
δn−1 = γn−1.

(ii) Let k > 1, then taking the terms of the homogeneous degree n in (2.9), we
get bnxn = 0, so b = 0.

Let’s first suppose y | H. Taking from (2.9) terms of (k, 1)-quasidegree n, i.e.,
the terms with xrys, where r

k + s
1 = n, we get

(2.10) (ay)n + (dx)α(ay) + δ(dx)β = u0 · (yn + xαy + γxβ),

where u0 = u(0). This implies that yn + xαy + γxβ ≈ yn + xαy + δxβ and again,
by theorem 2.2, γn−1 = δn−1.

If y � H, let H be x-regular of the order r (r � 2, because b = 0). Then
H contains a term brx

r with br �= 0. First suppose r < k, then the monomial
(brx

r)n ∈ Hn is the only term of (k, 1)-quasidegree rn/k in Hn, and also in (2.9):
namely, (dx)α(brx

r) ∈ LαH is the term of the minimal (k, 1)-quasidegree in LαH -
α+r

k = (n−1)+ r
k > rn/k; also Lkn and u · (yn +xαy +γxβ +xβ+r) obviously have

no term of (k, 1)-quasidegree less then n, and n > rn/k. So, if r < k, taking in
(2.9) terms of (k, 1)-quasidegree rn/k we get (brx

r)n = 0, that contradicts br �= 0.
Therefore r � k, and in (2.9) there are no terms of (k, 1)-quasidegree less than n.
Taking in (2.9) terms of the minimal (k, 1)-quasidegree, we get (2.10) if r > k, and
if r = k we have (ay + bkxk)n + (dx)α(ay + bkxk) + δ(dx)β = u0 · (yn + xαy + γxβ).
In both cases we obtain that yn + xαy + γxβ ≈ yn + xαy + δxβ , and therefore
γn−1 = δn−1. �

In the case (iii) r � k it is not easy to calculate the dimension of the algebra
C{x, y}/M(f), since there is a multitude of cases depending on r. Therefore we
can not distinguish the analytic classes for different r in the case (iii) as we could
in (ii). Also, we can not distinguish these classes from those in (i) and (ii).

Let us also note that in all three cases (i)–(iii), the ideal M(f) is generated by
(k, 1)-quasihomogeneous polynomials. Therefore, all relations between monomials
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in the algebra C{x, y}/M(f) are generated by quasihomogeneous relations, and
the algebra splits as a vector space into the direct sum of subspaces generated by
monomials of the same (k, 1)-quasidegree.

References

[BK] E. Brieskorn, H. Knörrer, Ebene algebraische Kurven, Birkhäuser, Boston–Stuttgart, 1986.
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