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Fusarium species are cosmopolitan soil phytopathogens from the division

Ascomycota, which produce mycotoxins and cause significant economic

losses of crop plants. However, soils suppressive to Fusarium diseases are

known to occur, and recent knowledge on microbial diversity in these soils has

shed new lights on phytoprotection effects. In this review, we synthesize current

knowledge on soils suppressive to Fusarium diseases and the role of their

rhizosphere microbiota in phytoprotection. This is an important issue, as

disease does not develop significantly in suppressive soils even though

pathogenic Fusarium and susceptible host plant are present, and weather

conditions are suitable for disease. Soils suppressive to Fusarium diseases are

documented in different regions of the world. They contain biocontrol

microorganisms, which act by inducing plants’ resistance to the pathogen,

competing with or inhibiting the pathogen, or parasitizing the pathogen. In

particular, some of the Bacillus, Pseudomonas, Paenibacillus and Streptomyces

species are involved in plant protection from Fusarium diseases. Besides specific

bacterial populations involved in disease suppression, next-generation

sequencing and ecological networks have largely contributed to the

understanding of microbial communities in soils suppressive or not to

Fusarium diseases, revealing different microbial community patterns and

differences for a notable number of taxa, according to the Fusarium

pathosystem, the host plant and the origin of the soil. Agricultural practices

can significantly influence soil suppressiveness to Fusarium diseases by

influencing soil microbiota ecology. Research on microbial modes of action

and diversity in suppressive soils should help guide the development of effective

farming practices for Fusarium disease management in sustainable agriculture.
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1 Introduction

The fungal genus Fusarium encompasses several plant-

pathogenic species, which are among the most destructive

phytopathogens world-wide, causing diseases on many agricultural

crops (Burgess and Bryden, 2012). They are ubiquitous in parts of the

world where cereals and other crops are grown and they produce a

wide variety of mycotoxins, which may be present in feed and food

products (Babadoost, 2018; Moretti et al., 2018; Chen et al., 2019).

Consumption of products that are contaminated with mycotoxins

may cause acute or chronic effects in both animals and humans, and

could result in immune-suppressive or carcinogenic effects (Jard

et al., 2011). By producing mycotoxins and by inducing necrosis

and wilting in plants, Fusarium fungi are causing huge economic

losses of cereal crops throughout the world (Khan et al., 2017). Their

broad distribution has been attributed to their ability to develop on

different substrates and plant species, and to produce spores that

enable efficient propagation (Desjardins, 2006; Arie, 2019). They are

typical soil-borne microorganisms, routinely found in plant-

associated fungal communities (Reyes Gaige et al., 2020).

Efficient management of plant diseases caused by Fusarium is

important to limit crop losses and to reduce mycotoxin production

in alimentary products (Babadoost, 2018). Because mycotoxin

synthesis can occur not only after harvesting but also before, one

of the best ways to reduce its presence in food and feed products is

to prevent its formation in the crop (Jard et al., 2011). Over the

years, different methods, such as the use of resistant cultivars and

chemical fungicides, have been undertaken in order to control or

prevent crop diseases (Willocquet et al., 2021). In spite of that,

Fusarium continues to cause huge crop losses, up to 70% in South

America, 54% in the United States and 50% in Europe in the case of

Fusarium head blight (FHB) disease of wheat (Scott et al., 2021).

Alternative control methods, based on plant-protection effects

of beneficial microorganisms, have also been investigated (Janvier

et al., 2007; Nguyen et al., 2018). Farming practices greatly influence

these effects by shaping the rhizosphere microbial community

(Campos et al., 2016), stimulating the activity of beneficial

rhizosphere microorganisms and restricting the activity of soil-

borne Fusarium pathogens (Janvier et al., 2007). Indeed, crop

rotation, tillage and addition of organic amendments may provide

some control of soil-borne pathogens, through different microbial

direct and indirect mechanisms (Janvier et al., 2007). The effect of

plant-protecting soil microbiota on plant health is of particular

interest in the case of disease-suppressive soils, which were defined

by Baker and Cook (1974) as “soils in which the pathogen does not

establish or persist, establishes but causes little or no damage, or

establishes and causes disease for a while but thereafter the disease is

less important, although the pathogen may persist in the soil”.

Suppressive soils represent a reservoir of beneficial microorganisms,

which may confer effective plant protection against various soil-

borne diseases (Gómez Expósito et al., 2017). This biocontrol

potential of suppressive soils is of great importance when

considering phytopathogens like Fusarium spp., which are

causing increasing damage to crops in the on-going climate

change context (Babadoost, 2018). Insight into the time and space
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microbial dynamics of soils suppressive to Fusarium diseases,

together with the understanding of microbial modes of action and

agricultural practices applied, is needed in order to develop safe,

effective, and stable tools for disease management (Gómez Expósito

et al., 2017).

By selecting their rhizosphere microbiome (Tkacz et al., 2015;

Gruet et al., 2023), plants may contribute themselves to

suppressiveness (Almario et al., 2014; Gómez Expósito et al., 2017).

Soil represents the richest known reservoir of microbial biodiversity

(Curtis et al., 2002; Wang et al., 2016) and displays several

compartments, i.e. the bulk soil containing microorganisms that are

not affected by the roots, the rhizosphere where soil microorganisms

are under the influence of roots (and roots exudates), the rhizoplane

with root-adhering microorganisms, and the endosphere for root

tissues colonized by microorganisms (Sánchez-Cañizares et al., 2017).

The rhizosphere and rhizoplane harbor an abundant community of

bacteria, archaea, oomycetes and fungi, whose individual members

can have beneficial, deleterious or neutral effects on the plant. The

collective genome of this microbial community is larger than that of

the plant itself, and is often referred to as the plant’s second genome

(Berendsen et al., 2012). Thus, this alliance of the plant and its

associated microorganisms represents a holobiont, which has

interdependent, fine-tuned and complex functioning (Berendsen

et al., 2012; Vandenkoornhuyse et al., 2015; Sánchez-Cañizares

et al., 2017). In this system, the plant is a key player, as nearly 40%

of all photosynthates are released directly by roots into the

rhizosphere, serving as a fuel for microbial communities, thus

recruiting and shaping this microbiome (Berendsen et al., 2012;

Tkacz and Poole, 2015). These photosynthates are conditioned by

the plant genotype, developmental stage, metabolism, immune

system and its ability to exudate (Sánchez-Cañizares et al., 2017).

In this context, suppressiveness will depend on microbiome diversity

and functioning.

This review deals with recent knowledge on soils suppressive to

Fusarium diseases, which sheds new lights on molecular and

ecological mechanisms underpinning phytoprotection effects and

highlights the importance of microbial diversity in the functioning

of these suppressive soils. To this end, we summarize current

knowledge on Fusarium taxonomy and ecology, and their

mechanisms of plant infection. In addition, we review our

understanding of biocontrol agents against Fusarium and their

modes of action. Finally, we focus on soils suppressive to Fusarium

diseases and the importance of farming and environmental factors

modulating suppressiveness, with an emphasis on the particularities

of the different Fusarium pathosystems.
2 Fusarium phytopathogens and
plant diseases

2.1 Fusarium ecology

Fusarium species occur in soils, but they can also grow in and

on living and dead plants (Laraba et al., 2021) and animals (Xia

et al., 2019), with the ability to live as parasites or saprophytes
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(Smith, 2007; Summerell, 2019). Some can also be found in caves

(Bastian et al., 2010) or in man-made water systems (Sautour et al.,

2012). Fusarium species are mostly known as phytopathogens, but

some of them have been evidenced as contaminants in industrial

processes, indoor environments, or pharmaceutical and food

products (Abdel-Azeem et al., 2019), whereas others behave as

opportunistic human/animal pathogens (Al-Hatmi et al., 2019; da

Silva Santos et al., 2020) or are fungicolous (Torbati et al., 2021).

Focusing on plant-interacting Fusarium species, their

saprophytic potential enables them to survive the winter in the

crop debris, in the form of mycelium or spores that serve as plant-

infecting propagules in the spring (Figure 1A) (Leslie and

Summerell, 2006). Fusarium species vary in reproduction

strategies, and they produce sexual spores as well as three types of

asexual spores, i.e. (i) microconidia, which are typically produced

under all environmental conditions, (ii) macroconidia, which are

often found on the surface of diseased plants, and (iii)

chlamydospores (survival structures), which are thick walled and

produced from macroconidia or older mycelium (Ajmal et al.,

2023). More than 80% of Fusarium species propagate using

asexual spores, but not all of them produce all three types of

spores, while sexual reproduction can involve self-fertility or out-

crossing (Rana et al., 2017). Additionally, some species produce

sclerotia, which promote survival in soil (Lesl ie and

Summerell, 2006).

Fusarium shows climatic preferences, as F. oxysporum, F. solani,

F. verticillioides (formerly F. moniliforme), F. tricinctum, F.

fujikuroi, F. pseudograminearum and F. graminearum are found

worldwide, F. culmorum and F. avenaceum in temperate regions,

whereas some species occur in tropical or cool regions (Backhouse

and Burgess, 2002; Babadoost, 2018; Senatore et al., 2021). The

growth of each Fusarium species is largely determined by abiotic

environmental conditions, notably temperature and humidity

(Table S1) (Xu, 2003; Crous et al., 2021). However, other

environmental factors, such as soil characteristics, cropping
Frontiers in Plant Science 03
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influence the diversity of Fusarium in soils (Abdel-Azeem et al.,

2019; Pfordt et al., 2020; Wang et al., 2020; Du et al., 2022).
2.2 Taxonomy of Fusarium spp.

The Fusarium genus exhibits high level of variability in terms of

morphological, physiological and ecological properties, which

represents a difficulty in establishing a consistent taxonomy of

these species (Burgess et al., 1996). An additional difficulty for

classification is the existence of both asexual (anamorph) and

sexual (teleomorph) phases in their life cycle (Summerell, 2019).

Based on the most widely used classification, the anamorph state of

the genus Fusarium is classified in the family Nectriaceae, order

Hypocreales and division Ascomycota (Crous et al., 2021). Several

teleomorphs have been related to Fusarium species, but not all

Fusarium species have a known sexual state in their life cycle

(Munkvold, 2017). Most of these teleomorphs are in the genus

Gibberella, including the economically important pathogens, such

as G. zeae (anamorph F. verticillioides) and G. moniliformis

(anamorph F. verticillioides) (Keszthelyi et al., 2007). Other

Fusarium teleomorphs are members of the genera Albonectria,

Neocosmospora or Haematonectria. Teleomorphs are usually not

observed in the field, but rather under lab conditions. The dual

anamorph-teleomorph nomenclature for fungi has now been

abolished, and the name Fusarium has been retained for these

fungi (Geiser et al., 2013).

The genus Fusarium is currently composed of 23 species

complexes and at least 69 well-individualized species. Fusarium

species complexes are groups of closely-related species with the

same morphology, which are strongly supported from a

phylogenetic perspective (O’Donnell et al., 2013; O’Donnell et al.,

2015; Summerell, 2019; Xia et al., 2019; Laraba et al., 2021; Senatore

et al., 2021; Yilmaz et al., 2021), as shown in Figure 2. Within a
BA

FIGURE 1

Interactions of Fusarium species with plant and other microbiota members. (A) Life cycle of Fusarium species and their mechanism of plant infection
by producing three types of spores: ascospores, conidia and chlamydospores. Fg, F graminearum; Fo, F oxysporum; Fs, F solani; Fc, F culmorum; Fv,
F verticillioides. (B) Dynamic interactions between beneficial soil microorganisms, plant and phytopathogenic Fusarium species.
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given Fusarium species, certain strains may be pathogenic while

others are not (Fuchs et al., 1997; De Lamo and Takken, 2020;

Constantin et al., 2021). However, most phytopathogenic species

belong to the F. fujikuroi, F. sambucinum, F. oxysporum, F.

tricinctum or F. solani species complexes (O’Donnell et al., 2013;

Senatore et al., 2021). Furthermore, Fusarium species capable of

infecting a wide range of plants are classified into different formae

speciales, based on the host plant they can infect (Edel-Hermann

and Lecomte, 2019; Coleman, 2016). Currently, there are 106 well-

described F. oxysporum formae speciales (Edel-Hermann and

Lecomte, 2019) and 12 well-described F. solani formae speciales

(Šisǐć et al., 2018).

Over the past 100 years, the taxonomy of Fusarium has

undergone many changes, but most classification procedures have

been based on the size and shape of the macroconidia, the presence or

absence of microconidia and chlamydospores, and the structure of

the conidiophores (Ristić, 2012). Identification of Fusarium species

based on morphological characteristics also included observations of

colony pigmentation and type of aerial mycelium (Crous et al., 2021).

The standard method now used to identify Fusarium isolates to a

species level is to sequence one (or more) of the following genes:

translocation elongation factor-1a (tef-1a), RNA polymerase 1 and 2

(rpb1 and rpb2), b-tubulin (tub), histone (his), ATP citrate lyase

(acl1) or calmodulin (CaM) (Herron et al., 2015; Summerell, 2019;

Crous et al., 2021; Laraba et al., 2021; Yilmaz et al., 2021). The tef-1a
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gene is a first-choice marker as it has good resolution power for the

majority of Fusarium species, while sequencing the gene rpb2 allows

differentiation of close species. The other genetic markers mentioned

have variable resolution power and are often used together with tef-

1a or rpb2 (Crous et al., 2021). The internal transcribed spacer

regions of the ribosomal gene (ITS), which are common barcodes to

identify fungi, are not recommended for Fusarium identification, as

they are not sufficiently informative for a significant number of

Fusarium species (Summerell, 2019).
2.3 Mechanisms of Fusarium infection,
symptoms and etiology

Before infecting the host plant tissues, soil-borne pathogens

may grow in the rhizosphere or on the host as saprophytes,

managing to escape the rhizosphere battlefield (Raaijmakers et al.,

2009). The outcome is directly influenced by host and microbial

defense mechanisms, at the level of the holobiont (Berendsen et al.,

2012; Vandenkoornhuyse et al., 2015). During their life cycle, plants

are exposed to numerous phytopathogens, and they have developed

different adaptive strategies. Upon pathogen attack, both

composition and quantity of root metabolites may change (Rolfe

et al., 2019), which can be useful for direct defense against the

pathogens (Rizaludin et al., 2021), for signaling the impending
FIGURE 2

Phylogenetic relationship between pathogenic Fusarium species and 15 different species complexes. The distance-method tree (1000 bootstrap
replicates) was inferred from the rpb1 (RNA Polymerase 1) data set, using the SeaView multiplatform (Gouy et al., 2010). The tree was visualized using
iTol (Letunic and Bork, 2021). Sphaerostilbella aureonitens NRRL 13992 was used as an outgroup. Species complexes delimitation is based on the
phylogeny published in Summerell (2019).
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threat to the neighboring plants (Pélissier et al., 2021), or for

recruiting beneficial microorganisms with biocontrol capabilities.

The latter phenomenon is referred to as the ‘a cry for help’ strategy

(Rizaludin et al., 2021).

If the pathogen manages to escape from the rhizosphere battlefield,

the infection cycle can proceed. Plant infection by Fusarium occurs in a

few successive stages (Figure 1A), which differs according to Fusarium

species. Seeds infected with Fusarium in the previous season can also

serve as disease initiators (Jiménez-Dıáz et al., 2015). F. graminearum

grows saprophytically on crop debris, which is the overwintering

reservoir of the pathogen (Brown et al., 2010). The fungus may

infect roots and cause damage to the collar (Ares et al., 2004).

During the crop anthesis and under warm and humid weather

conditions, asexual conidia, sexual ascospores or chlamydospores are

dispersed by rain or wind and reach the outer anthers and outer glumes

of the plant. After spore germination, hyphae penetrate the host plant

through the cracked anthers, followed by inter- and intracellular

mycelial growth, resulting in damage to host tissues and especially

head blight disease (Brown et al., 2010). Unlike F. graminearum, F.

culmorum produces only asexual conidia and chlamydospores, which

are also dispersed by rain and wind, reaching plant heads and infecting

the ears during the anthesis. Subsequently, conidia germinate on the

lemma and palea, followed by inter- and intracellular mycelial growth

(Wagacha and Muthomi, 2007). In contrast, the infection cycle of F.

oxysporum begins when mycelia, germinating asexual conidia or

chlamydspores enter the healthy plant through the root tip, lateral

roots or root wounds. The fungus progresses intracellularly, entering

the xylem sap flow and being transported to the aerial parts of the plant

where it forms infection structures. The infection structures that form

close the vascular vessels, disrupt nutrient translocation, leading to

stomatal closure, leaf wilting and plant death (Banerjee and Mittra,

2018; Redkar et al., 2022a; Redkar et al., 2022b). In the case of F.

verticillioides, infection starts when mycelia, asexual conidia or sexual

ascospores are carried inside the seed or on the seed surface and later

develop inside the growing plant, moving from the roots up to the

maize kernels (Oren et al., 2003; Gai et al., 2018). Sometimes, the

fungus colonizes and grows along the veins of the plant root, while

sometimes it manages to penetrate the plant cells and form internal

hyphae, therefore causing damage (Lei et al., 2011; Blacutt et al., 2018).

Finally, for F. solani, the attachment of mycelia, asexual conidia, sexual

ascospores or chlamydospores to the susceptible host is the first step in

disease development, after which the fungus enters the host through

stomata or the epidermis. Following penetration, F. solani is able to

spread through the xylem, ultimately causing wilting of the host plant

(Coleman, 2016).

It is reported that mycotoxins play a key role in pathogenesis, and

that the aggressiveness of Fusarium depends on its toxin-producing

capacity (Mesterházy, 2002; Xia et al., 2019; Laraba et al., 2021;

Senatore et al., 2021; Yilmaz et al., 2021). Several mycotoxins are

produced by Fusarium species, including the trichothecenes

deoxynivalenol (DON) and nivalenol (NIV), zearalenone (ZEA),

the cyclodepsipeptides beauvericin (BEA) and enniatins (ENN),

and fusaric acid (Wagacha and Muthomi, 2007; Munkvold et al.,

2021). The biosynthesis of these toxins is encoded by the tri, pks, bea

and fus genes, respectively (Dhanti et al., 2017). However, not every

species has the ability of producing all of the abovementioned
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by F. graminearum and F. culmorum, while ZEA and fusaric acid are

often produced by some members of the F. sambucinum species

complex (i.e. F. graminearum, F. culmorum), the F. fujikuroi complex

(F. verticillioides) and the F. incarnatum-equiseti complex (Nesǐć

et al., 2014; Munkvold et al., 2021), and BEA and ENN are produced

by certain F. oxysporum and members of the F. tricinctum species

complex (Munkvold et al., 2021; Senatore et al., 2021). DON

production by F. graminearum is reported to be essential for

disease development in wheat spikes (Cuzick et al., 2008). Spikes

treated with DON or NIV led to yield losses even in the absence of the

pathogen, indicating a strong negative effect of these trichothecenes

on wheat growth (Ittu et al., 1995). In addition to DON, fusaric acid is

also a virulence factor involved in programmed cell death (López-

Dıáz et al., 2018). It was shown that alkaline pH and low nitrogen and

iron availabilities lead to increased fusaric acid production in F.

oxysporum (Palmieri et al., 2023). Besides mycotoxins, there are other

metabolites produced by Fusarium species that play a role in disease

pathogenesis. Deletion of the F. graminearum gene cluster

responsible for the synthesis of fusaoctaxin A abolished the fungal

ability to colonize wheat coleoptiles (Jia et al., 2019). Extracellular

lipases secreted by F. graminearum affected the plant’s defense

responses by inhibiting callose synthase activity (Blümke et al., 2014).

Diseases caused by Fusarium species include blights, wilts and

rots of various crops in natural environments and in agroecosystems

(Nelson et al., 1994; Ma et al., 2013). Fusarium Head Blight (FHB) or

‘scab’ is a disease caused primarily by the F. graminearum species

complex. It is the fourth-ranked fungal phytopathogen in term of

economic importance (Dean et al., 2012; Legrand et al., 2017),

causing yield losses of 20% to 70% (Bai and Shaner, 1994). F.

graminearum is responsible for kernel damage and mycotoxin

production (Ma et al., 2013) in cereals like wheat, barley, rice and

oats (Goswami and Kistler, 2004). Typical symptoms of FHB begin

soon after flowering, as diseased spikelets gradually bleach, leading to

bleaching of the entire head. After this stage, black spherical

structures called perithecia may appear on the surface of diseased

spikelets. Later, as the disease becomes more severe, the fungus begins

to attack the kernels inside the head, causing them to wrinkle and

shrink (Schmale and Bergstrom, 2003). FHB can also be caused by F.

culmorum, which is dominant in cooler regions of Europe (Wagacha

and Muthomi, 2007). Vascular wilt is responsible for severe losses in

crops such as melon, tomato, cotton, bean and banana. It is caused by

Fusarium oxysporum, the fifth most economically important fungal

phytopathogen (Michielse and Rep, 2009; Dean et al., 2012; Husaini

et al., 2018). Symptoms of vascular wilt are first observed on the older

leaves, as they begin to droop, followed by defoliation and yellowing

of the younger leaves and eventually, plant death (Britannica, 2017;

Redkar et al., 2022a). Root, stem and foot rots of various non-grain

host plants are often caused by Fusarium solani, and the disease

symptoms depend on the host plant and the particular forma specialis

(Voigt, 2002; Coleman, 2016). However, typical symptoms of root,

stem and foot rots include brown lesions on the affected plant organs.

Fusarium verticillioides causes ear and stalk rot in hosts such as

maize, sorghum and rice (Murillo-Williams and Munkvold, 2008;

Dastjerdi and Karlovsky, 2015), whereas F. graminearum is

responsible for causing Fusarium ear and stalk rot in maize
frontiersin.org
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(Goswami and Kistler, 2004). Fusarium ear rot is characterized by

discoloration of single or multiple kernels in different areas of the ear,

while early signs of stalk rot include lodging and discoloration of

the stem.
3 Biocontrol agents against Fusarium
and their modes of action

Plant-beneficial microorganisms present in the rhizosphere

may protect plants from Fusarium pathogens, through different

modes of action including (i) induction of resistance in the plant,

(ii) competition with the pathogens for space and nutrients, (iii)

amensalism based on the production of different metabolites or lytic

enzymes, or (iv) parasitism (Figure 1B) (Nguvo and Gao, 2019;

Morimura et al., 2020). Some of them are also able to inhibit

mycotoxin synthesis or to enhance their detoxification (Legrand

et al., 2017; Morimura et al., 2020). Certain biocontrol

microorganisms have multiple modes of action, which may be

expressed simultaneously or sequentially (Legrand et al., 2017).
3.1 Induced systemic resistance

Induced Systemic Resistance (ISR) is the phenomenon whereby

a plant, once appropriately stimulated by biological or chemical
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inducers, exhibits enhanced resistance when challenged by a

pathogen (Walters et al., 2013). ISR involves (i) the plant

perception of inducing signals, (ii) signal transduction by plant

tissues, and (iii) expression of plant mechanisms inhibiting

penetration of the pathogen into the host tissues (Magotra et al.,

2016). A wide variety of microorganisms, including the bacteria

Pseudomonas, Bacillus, Streptomyces and the fungi Trichoderma

and non-pathogenic F. oxysporum can induce ISR (Fuchs et al.,

1997; Choudhary et al., 2007; Zhao et al., 2014; Galletti et al., 2020)

in plants against Fusarium (Table 1). ISR in the plant-Fusarium

system is based on microbial induction of the activity of various

defense-related enzymes in plants, such as chitinase (Amer et al.,

2014), lipoxygenase (Aydi Ben Abdallah et al., 2017), polyphenol

oxidase (Akram et al., 2013), peroxidase, phenylalanine ammonia-

lyase (Zhao et al., 2012), b-1,3-glucanase, catalase (Sundaramoorthy

et al., 2012), and also the accumulation of phytoalexins, defense

metabolites against fungi (Kuć, 1995). Cyclic lipopeptide

antibiotics, e.g. fusaricidin (Li and Chen, 2019) and external cell

components, e.g. lipopolysaccharides (LPS) (Leeman et al., 1995)

can also trigger ISR. Some biocontrol agents can lead to ISR in

different plant species, while other biocontrol agents show plant

species specificity, suggesting specific recognition between

microorganisms and receptors on the root surface (Choudhary

et al., 2007).

Bacillus amyloliquefaciens subsp. plantarum strain SV65 was

assessed on tomato plants infected or not with F. oxysporum f. sp.
TABLE 1 Biocontrol agents, plant-Fusarium systems and ISR mechanisms.

Biocontrol agent Plant Pathogen Mechanism Reference

Bacillus amyloliquefaciens Tomato F. oxysporum Induction of genes coding for lipoxygenase or pathogenesis-related (PR)
proteins, i.e. acidic protein PR-1 and PR-3 chitinases

Aydi Ben
Abdallah et al.,
2017

Bacillus thuringiensis Tomato F. oxysporum Increase in polyphenol oxidase, phenyl ammonia lyase and peroxidase in plant Akram et al.,
2013

Bacillus megaterium Tomato F. oxysporum Induction of chitinase, b-1,3-glucanase, peroxidase and polyphenol oxidase
activities in plant

Amer et al., 2014

Bacillus subtilis Tomato F. oxysporum Increased activities of phenylalanine ammonia-lyase, polyphenol oxidase, and
peroxidase enzymes in plant

Akram et al.,
2015

Bacillus subtilis and
Pseudomonas protegens (in
combination and alone)

Chilli F. solani Increased activities of peroxidase, polyphenol oxidase, phenylalanine ammonia
lyase, b-1,3-glucanase, chitinase enzymes and phenol compounds involved in the
synthesis of phytoalexins

Sundaramoorthy
et al., 2012

Bacillus sp., Brevibacillus brevis
and Mesorhizobium ciceri (in
combination)

Chickpea F. oxysporum Increase in peroxidase, polyphenol oxidase, phenylalanine ammonia lyase,
phenols and total proteins in plants

Kumari and
Khanna, 2019

Brevibacillus parabrevis Cumin F. oxysporum Increase in peroxidase and polyphenol oxidase in plants Abo-Elyousr
et al., 2022

Burkholderia gladioli Saffron F. oxysporum Increased levels of endogenous jasmonic acid (JA) and expression of JA-
regulated and plant defense genes

Ahmad et al.,
2022

Pseudomonas aeruginosa Tomato F. oxysporum Bacterial production of 3-hydroxy-5-methoxy benzene methanol Fatima and
Anjum, 2017

Pseudomonas simiae Tomato F. oxysporum Bacterial production of lipopolysaccharides Duijff et al., 1997

(Continued)
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lycopersici (FOL). The expression of genes coding for lipoxygenase

or pathogenesis-related (PR) proteins, i.e. acidic protein PR-1 and

PR-3 chitinases was induced by B. amyloliquefaciens subsp.

plantarum SV65 in both FOL-inoculated and uninoculated plants,

suggesting its ability to induce ISR (Aydi Ben Abdallah et al., 2017).

Inoculation of chilli plants with Bacillus subtilis EPCO16 and EPC5

and P. protegens Pf1, separately or in combination, induced ISR,

with enhanced phytoalexin activities, and protected plants against

F. solani (Sundaramoorthy et al., 2012). Inoculation of chickpea

plants with a combination of Bacillus sp., Brevibacillus brevis and

Mesorhizobium ciceri lead to the accumulation of peroxidase,

polyphenol oxidase, phenylalanine ammonia lyase and phenols in

plants as well as resistance to F. oxysporum (Kumari and Khanna,

2019). Paenibacillus polymyxa WLY78 controls Fusarium wilt,

caused by Fusarium oxysporum f. sp. cucumerinum, through the

production of fusaricidin, which can induce ISR in cucumber via the

salicylic acid pathway (Li and Chen, 2019). Tomato showed

increased catalase and peroxidase activities when treated with

either Streptomyces sp. IC10 and Y28, or with Y28 alone,

respectively, outlining a strain-specific ISR in tomato against

Fusarium wilt mediated by FOL (Abbasi et al., 2019).

Streptomyces bikiniensis increased the activities of peroxidase,

phenylalanine ammonia-lyase and b-1,3-glucanase in cucumber

leaves (Zhao et al., 2012). Nonpathogenic Fusarium oxysporum

Fo47 can triger induced resistance to FOL and protects tomato from

Fusarium wilt (Fuchs et al., 1999). Trichoderma gamsii IMO5

increased transcript levels of ISR-marker genes ZmLOX10,

ZmAOS and ZmHPL in maize leaves, thereby protecting the plant

from the pink ear rot pathogen F. verticillioides (Galletti

et al., 2020).

An important determinant of biocontrol efficacy is the

population density of ISR-triggering microorganisms. For

example, ~105 CFU of Pseudomonas defensor (ex fluorescens)
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WCS374 per g of root are required for significant suppression of

Fusarium wilt of radish (Raaijmakers et al., 1995). Another

important feature of ISR in plants is that its effects are not only

expressed at the site of induction but also in plant parts that are

distant from the site of induction (Pieterse et al., 2014). For

example, root-colonizing Pseudomonas simiae (ex fluorescens)

WCS417r induced resistance in carnation, with phytoalexin

accumulation in stems, and protected shoots from F. oxysporum

(Van Peer et al., 1991). Priming of barley heads with P. fluorescens

MKB158 led to changes in the levels of 1203 transcripts (including

some involved in host defense responses), upon inoculation with

pathogenic F. culmorum (Petti et al., 2010).
3.2 Competition for space and nutrients

In the case of competition, biocontrol of pathogens occurs when

another microorganism is able to colonize the environment faster

and use nutrient sources more efficiently than the pathogen itself,

especially under limited conditions (Maheshwari et al., 2013;

Legrand et al., 2017). Bacteria and fungi have the ability to

compete with Fusarium, but the underlying mechanism of

competition is sometimes unclear. For example, competition

between non-pathogenic F. oxysporum strains and pathogenic F.

oxysporum has been described, reducing disease incidence (Eparvier

and Alabouvette, 1994; Fuchs et al., 1999). Similarly, a non-

aflatoxigenic Aspergillus flavus strain was found to outcompete a

mycotoxin-producing F. verticillioides during colonization of maize

(Reis et al., 2020). Competition may involve bacteria such as

Pseudomonas capeferrum (ex putida) strain WCS358, which

suppresses Fusarium wilt of radish (Lemanceau et al., 1993).

In some cases, traits involved in competition have been

identified. In P. putida (Trevisan) Migula isolate Corvallis,
TABLE 1 Continued

Biocontrol agent Plant Pathogen Mechanism Reference

Pseudomonas defensor Radish F. oxysporum Bacterial production of lipopolysaccharides Leeman et al.,
1995

Paenibacillus polymyxa Cucumber F. oxysporum Bacterial production of fusaricidin, which induces ISR via salicylic acid Li and Chen,
2019

P. fluorescens Barley F. culmorum Changed transcript levels of lipid transfer proteins and protease inhibitors Petti et al., 2010

Streptomyces enissocaesilis Tomato F. oxysporum Increased catalase activity in plant Abbasi et al.,
2019

Streptomyces rochei Tomato F. oxysporum Increased catalase and peroxidase activity in plant Abbasi et al.,
2019

Streptomyces bikiniensis Cucumber F. oxysporum Increased activities of peroxidase, phenylalanine ammonia-lyase, and b-1,3-
glucanase in plant

Zhao et al., 2012

Trichoderma gamsii Maize F.
verticillioides

Enhanced transcript levels of ISR marker genes Galletti et al.,
2020

Trichoderma longibrachiatum Onion F. oxysporum Accumulation of 25 stress-response metabolites Abdelrahman
et al., 2016

Non-pathogenic Fusarium
oxysporum

Tomato F. oxysporum Increased activities of chitinase, b-1,3-glucanase and b-1,4-glucosidase Fuchs et al., 1997
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competition for root colonization entails plant’s production of

agglutinin, and P. putida mutants lacking the ability to

agglutinate with this plant glycoprotein showed reduced levels of

rhizosphere colonization and suppression of Fusarium wilt of

cucumber (Tari and Anderson, 1988). P. capeferrum WCS358

suppresses Fusarium wilt of radish by competing for iron through

the production of its pseudobactin siderophore (Lemanceau et al.,

1993). In addition to bacteria, the fungus Trichoderma asperellum

strain T34 can control the disease caused by F. oxysporum f. sp.

lycopersici on tomato plants by competing for iron (Segarra

et al., 2010).
3.3 Amensalism based on antibiosis or
lytic enzymes

Another important microbial mechanism to suppress plant

pathogens is the secretion of inhibitors by beneficial

microorganisms. They include anti-fungal secondary metabolites,

sometimes termed antibiotics (e.g. fengycin, iturin, surfactin (Chen

et al., 2018), fusaricidin and polymyxin (Zalila-Kolsi et al., 2016)), as

well as Volatile Organic Compounds (VOCs; Zaim et al., 2016;

Legrand et al., 2017) (Table 2). Extracellular lytic enzymes such as

cellulase, chitinase, pectinase, xylanase (Khan et al., 2018), protease

and glucanase (Saravanakumar et al., 2017), can also interfere with

Fusarium growth or activity.

Bacillota representatives (formerly Firmicutes), i.e. Bacillus and

Brevibacillus species are highlighted in several studies as candidates

for Fusarium biocontrol through production of anti-fungal

metabolites (Palazzini et al., 2007; Zhao et al., 2014; Chen et al.,

2018; Johnson et al., 2020). Bacillus subtilis SG6 has the ability to

produce fengycins and surfactins acting against F. graminearum

(Zhao et al., 2014), whereas Bacillus velezensis LM2303 exhibited

strong inhibition of F. graminearum and significantly reduced FHB

severity under field conditions (Chen et al., 2018). Genome mining

of B. velezensis LM2303 identified 13 biosynthetic gene clusters

encoding secondary metabolites and chemical analysis confirmed

their presence. These metabolites included three antifungal

metabolites (fengycin B, iturin A, and surfactin A) and eight

antibacterial metabolites (surfactin A, butirosin, plantazolicin and

hydrolyzed plantazolicin, kijanimicin, bacilysin, difficidin,

bacillaene A and bacillaene B, 7-o-malonyl macrolactin A and 7-

o-succinyl macrolactin A) (Chen et al., 2018). Brevibacillus fortis

NRS-1210 produces edeine, a compound with antimicrobial

activity, which inhibits chlamydospore germination and conidia

growth in F. oxysporum f. sp. cepae (Johnson et al., 2020).

Pseudomonadota representatives (formerly Proteobacteria) are

also known for disturbing Fusarium growth or activity. Thin layer

chromatography analysis showed that Gluconacetobacter

diazotrophicus produces pyoluteorin, which is involved in the

suppression of F. oxysporum (Logeshwarn et al., 2011), while

Burkholderia sp. HQB-1 produces phenazine-1-carboxylic acid,

which is efficient at controlling Fusarium wilt of banana, caused

by F. oxysporum f. sp. cubense (Xu et al., 2020). Pseudomonas sp.

EM85 was successful in suppressing disease caused by F.

verticillioides and F. graminearum, by producing antifungal
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antibiotics and fluorescent pigments (Pal et al., 2001). Besides

bacteria, Trichoderma fungi synthesize a number of secondary

metabolites such as pyrones (which completely inhibit spore

germination of F. oxysporum), koningins (which affect the growth

of F. oxysporum) and viridin (which prevents the germination of

spores of F. caeruleum) (Reino et al., 2008).

VOCs have recently received more attention, as they can enable

interactions between organisms in the soil ecosystem through both
TABLE 2 Biocontrol agents, plant-Fusarium systems and biocontrol
enzymes and metabolites.

Biocontrol
agents

Fusarium
pathogens

Biocontrol
enzymes and
metabolites

References

Bacillus subtilis F. oxysporum
F.
graminearum

Cellulase, chitinase,
pectinase, xylanase,
protease, fengycins
and surfactins

Zhao et al.,
2014; Zalila-
Kolsi et al.,
2016; Khan
et al., 2018

Bacillus velezensis F.
graminearum
F. culmorum

Fengycin B, iturin
A, surfactin A and
siderophores

Chen et al.,
2018; Adeniji
et al., 2019

Bacillus pumilus F. oxysporum Chitinolytic
enzymes and
antibiotic surfactin

Agarwal et al.,
2017

Bacillus
amyloliquefaciens

F.
graminearum

Iturin and
surfactin

Zalila-Kolsi
et al., 2016

Brevibacillus fortis F. oxysporum Edeine Johnson et al.,
2020

Brevibacillus
reuszeri

F. oxysporum Chitinolytic
enzymes

Masri et al.,
2021

Burkholderia sp. F. oxysporum Phenazine-1-
carboxylic acid

Xu et al., 2020

Chryseobacterium
sp.

F. solani VOCs Tyc et al., 2015

Gluconacetobacter
diazotrophicus

F. oxysporum Antibiotic
(pyoluteorin) and
VOCs

Logeshwarn
et al., 2011

Kosakonia
arachidis

F. verticillioides
F. oxysporum

Chitinase, protease,
cellulase and
endoglucanase

Singh et al.,
2021

Lysobacter
antibioticus

F.
graminearum

VOCs Kim et al., 2019

Paenibacillus
polymyxa

F.
graminearum
F. oxysporum

Fusaricidin,
polymyxin and
VOCs

Raza et al.,
2015; Zalila-
Kolsi et al.,
2016

Pseudomonas sp. F. verticillioides
F.
graminearum

Antifungal
antibiotics and
fluorescent
pigments

Pal et al., 2001

Streptomyces spp. F. oxysporum Antibiotic
compounds,
lipopeptin A and
lipopeptin B

Cuesta et al.,
2012; Wang
et al., 2023

Trichoderma sp. F. oxysporum
F. caeruleum

Pyrones, koningins
and viridins

Reino et al.,
2008
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water and air phases (De Boer et al., 2019). Paenibacillus polymyxa

WR-2 produced VOCs when cultivated in the presence of organic

fertilizer and root exudates. Among them, benzothiazole,

benzaldehyde, undecanal, dodecanal, hexadecanal, 2-tridecanone

and phenol inhibited mycelial growth and spore germination of F.

oxysporum f. sp. niveum (Raza et al., 2015). Chryseobacterium sp.

AD48 inhibited growth of F. solani through the production of

VOCs (Tyc et al., 2015). VOCs produced by Lysobacter antibioticus

HS124 enhanced mycelial development, but they also reduced

sporulation and spore germination of F. graminearum at the

same time (Kim et al., 2019). In addition, testing the antagonistic

mechanisms of Aspergillus pseudocaelatus and T. gamsii revealed

the presence of the VOCs 2,3,4-trimethoxyphenylethylamine, 3-

methoxy-2-(1-methylethyl)-5-(2-methylpropyl) pyrazine, (Z)-9-

octadecenamide, pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-3-

(2-methylpropyl)-, thieno [2,3-c] pyridine-3-carboxamide,4,5,6,7-

tetrahydro-2-amino-6-methyl- and hexadecanamide, which have

an inhibitory activity against F. solani (Zohair et al., 2018).

Regarding extracellular lytic enzymes, B. subtilis 30VD-1

inhibited FOL by producing cellulase, chitinase, pectinase, xylanase

and protease (Khan et al., 2018), while Bacillus pumilus synthesized a

chitinolytic enzyme that reduced severity of disease caused by F.

oxysporum on buckwheat under gnotobiotic conditions (Agarwal

et al., 2017). Brevibacillus reuszeri affected the growth of F. oxysporum

by producing chitinolytic enzymes (Masri et al., 2021). Kosakonia

arachidis EF1 produced different cell-wall degrading enzymes, such as

chitinases, proteases, cellulases and endoglucanases, which inhibited

growth of F. verticillioides and F. oxysporum f. sp. cubense. Scanning

electron microscopy revealed broken fungal mycelia surface and

hyphae fragmentation when pathogens were grown in the presence

of K. arachidis EF1 (Singh et al., 2021).
3.4 Parasitism

Mycoparasitism is an ancient lifestyle, during which one fungus

parasitizes another fungus (Kubicek et al., 2011). It involves direct

physical contact with the host mycelium (Pal and McSpadden

Gardener, 2006), secretion of cell wall-degrading enzymes and

subsequent hyphal penetration (Viterbo et al . , 2002).

Mycoparasitic relationships can be biotrophic, where the host

remains alive and the mycoparasitic fungus obtains nutrients

from the mycelium of its partner, or necrotrophic, where the

parasite contacts and penetrates the host, resulting in the death of

the host and allowing the mycoparasite to use the remains of the

host as a nutrient source (Jeffries, 1995). Several species of fungi are

mycoparasitic, of which Trichoderma is the best described. Contact

between the mycoparasitic fungi Gliocladium roseum, Penicillium

frequentans, T. atroviride, T. longibrachiatum or T. harzianum and

their phytopathogenic targets F. culmorum, F. graminearum and F.

nivale triggers the formation of various mycoparasitic structures,

such as hooks and pincers, which lead to cell disruption in the

phytopathogens (Pisi et al., 2001). When T. asperellum and T.

harzianum were grown in the presence of F. solani cell wall, they

secreted several cell wall-degrading enzymes, such as b-1,3-
glucanase, N-acetylglucosaminidases, chitinase, acid phosphatase,
Frontiers in Plant Science 09
acid proteases and alginate lyase (Qualhato et al., 2013), and

similarly, Clonostachys rosea produced chitinase and b-1,3-
glucanase in the presence of F. oxysporum cell wall (Chatterton

and Punja, 2009). Sphaerodes mycoparasitica is a biotrophic fungus

that parasitizes F. avenaceum, F. oxysporum and F. graminearum

hyphae and forms hooks as parasitic structures (Vujanović and

Goh, 2009). However, the direct contribution of mycoparasitism to

biological control is difficult to quantify as mycoparasitic fungi

typically exhibit a number of different biocontrol mechanisms (Pal

and McSpadden Gardener, 2006).
3.5 Inhibition and detoxification
of mycotoxins

Biocontrol research often focuses on pathogen inhibition, and

effects on mycotoxin synthesis or detoxification are often neglected

(Pellan et al., 2020). It can be expected that Fusarium inhibition will

diminish mycotoxin synthesis, but one comprehensive study found

that B. amyloliquefaciens FZB42 inhibited F. graminearum but at

the same time stimulated biosynthesis of DON toxin (Gu et al.,

2017). Conversely, DON production of F. graminearum (on wheat

kernels) was reduced by more than 80% with B. amyloliquefaciens

WPS4-1 and WPP9 (Shi et al., 2014), and Paenibacillus polymyxa

W1-14-3 and C1-8-b (He et al., 2009), whereas Pseudomonas

strains MKB158 and MKB249 significantly reduced DON

production in F. culmorum-infected wheat seeds (Khan and

Doohan, 2009). Pseudomonas sp. MKB158 lowered expression of

the gene coding for trichodiene synthase (an enzyme involved in the

production of trichothecene mycotoxins in Fusarium) by 33%, in

wheat treated with F. culmorum (Khan et al., 2006). DON

production in both F. graminearum and F. verticillioides was also

inhibited by the fungus T. asperellum TV1 and the oomycete

Pythium oligandrum M1/ATCC (Pellan et al., 2020). Other

mycotoxins may be targeted, as Trichoderma harzianum

Q710613, T. atroviride Q710251 and T. asperellum Q710682

decreased ZEA production in a dual-culture assay with F.

graminearum (Tian et al., 2018), and Streptomyces sp. XY006

lowered the synthesis of fusaric acid in Fusarium oxysporum f. sp.

cubense (Wang et al., 2023).
4 Soils suppressive to
Fusarium diseases

4.1 General suppressiveness

Soils that are suppressive to soil-borne diseases have been known

for more than 70 years (Vasudeva and Roy, 1950), and disease

suppression is associated primarily with the activity of beneficial

microorganisms (Schlatter et al., 2017). These microorganisms

interact with phytopathogens, thus affecting their survival,

development or infection of the plant (Weller et al., 2002;

Raaijmakers et al., 2009). Two types of soil suppressiveness have

been described, i.e. general (microbial community-based)

suppressiveness and specific (microbial population-based)
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suppressiveness (Schlatter et al., 2017). General suppressiveness is

dependent on the entire soil microbial biomass, which causes

pathogen inhibition through various mechanisms, especially

competition and the microbial release of inhibitors (Garbeva et al.,

2011; De Boer et al., 2019), and it cannot be transferred

experimentally between the soils (Weller et al., 2002). Hence, all

soils may present some level of general suppressiveness to soil-borne

diseases, and this level depends on soil type, agricultural practices and

total microbial activity (Janvier et al., 2007; Raaijmakers et al., 2009).

General suppressiveness typically results in the inability of the

pathogen to survive and proliferate in soil, and is termed fungistasis

in the case of fungal phytopathogens. Fungistasis can affect

Fusarium pathogens (De Boer et al., 2019; Legrand et al., 2019),

but its significance in relation to different Fusarium species or

formae speciales needs clarification. Legrand et al. (2019)

determined the soil fungistasis status of 31 wheat fields in the

case of F. graminearum, highlighting higher bacterial diversity, a

higher prevalence of Pseudomonas and Bacillus species and a denser

network of co-occurring bacterial taxa in soils with fungistasis. It

suggests the importance of cooperations within diversified bacterial

communities (including with antagonistic taxa) to control F.

graminearum in soil (Legrand et al., 2019). Accordingly, both

bacterial and fungal communities differed between Fusarium wilt-

diseased soils vs healthy (presumably suppressive) soils taken from

from eight countries and grown with different crop plants (Yuan

et al., 2020).
4.2 Specific suppressiveness to
Fusarium diseases

Besides general suppressiveness, there is also specific

suppression to certain diseases, which relies on the activity of a

few plant-protecting microbial groups (Weller et al., 2007; Almario

et al., 2014; Mousa and Raizada, 2016). Specific suppressiveness

may be conferred to non-suppressive soils (i.e. conducive soils) by
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2004; Raaijmakers et al., 2009). Although abiotic factors, such as soil

physicochemical properties, may contribute to the control of a given

pathogen, specific suppressiveness is essentially a phenomenon

mediated by beneficial soil microorganisms, since sterilization

processes convert suppressive into conducive soils (Garbeva et al.,

2004). It is expected that specific suppressiveness entails the

contribution of a few plant-protecting microbial groups (Weller

et al., 2007), but microbial community comparison of suppressive vs

conducive soils may evidence significant differences for a large

number of taxa (Kyselková et al., 2009; Legrand et al., 2019;

Ossowicki et al., 2020; Yuan et al., 2020; Lv et al., 2023).

The phenomenon of disease suppressiveness has been described

for many soil-borne fungal pathogens, including Gaeumannomyces

graminis var. tritici (Shipton et al., 1973; Weller et al., 2007;

Schlatter et al., 2017), Thievalopsis basicola (Stutz et al., 1986;

Almario et al., 2014) and Rhizoctonia solani (Mendes et al., 2011;

Schlatter et al., 2017). It is also well established in the case of several

Fusarium pathogenic species (Table 3), such as F. culmorum on

wheat (in the Netherlands and Germany; Ossowicki et al., 2020) and

barley (in Denmark; Rasmussen et al., 2002), F. oxysporum f. sp.

albedinis on palm tree (in Marocco; Rouxel and Sedra, 1989), F.

oxysporum f. sp. batatas on sweet potato (in California; Smith and

Snyder, 1971), F. oxysporum f. sp. cubense on banana (in India,

Indonesia, China, Gran Canaria island and several Central America

states; Stotzky and Torrence Martin, 1963; Domıńguez et al., 1996;

Shen et al., 2015b; Wang et al., 2019; Nisrina et al., 2021; Yadav

et al., 2021; Fan et al., 2023), F. oxysporum f. sp. cucumerinum on

cucumber (in California; Sneh et al., 1984) and cape gooseberry (in

Colombia; Bautista et al., 2023), F. oxysporum f. sp. dianthi on

carnation (in Italy; Garibaldi et al., 1983), F. oxysporum f. sp.

fragariae on strawberry (in Korea; Cha et al., 2016), F. oxysporum

f. sp. lini on flax (in Italy, California; Kloepper et al., 1980; Tamietti

and Pramotton, 1990), F. oxysporum f. sp. lycopersici on tomato (in

France, Italy; Tamietti and Alabouvette, 1986; Tamietti et al., 1993)

and wheat (in Italy; Tamietti and Matta, 1984), F. oxysporum f. sp.
TABLE 3 List of locations with soils suppressive to Fusarium diseases known to date, with a pathosystem, disease and the underlying suppression
mechanism.

Pathogen Disease Country Suppression mechanism References

F. culmorum Seedling blight of
barley

Denmark Soil microbiota that has a more efficient cellulolytic
activity

Rasmussen et al., 2002

F. culmorum F. culmorum disease
in wheat

Netherlands and
Germany

No specific taxa, but a guild of bacteria working
together

Ossowicki et al., 2020

F. graminearum No disease
supression tested,
only fungistasis

Britanny, France Pseudomonas and Bacillus Legrand et al., 2019

F. graminearum
Fg1

Wheat damping-off Serbia Under progress Todorović et al., unpublished data

F. oxysporum f.
sp. albedinis

Bayoud vascular
wilt of palm tree

Marocco Competition with soil microbiota Rouxel and Sedra, 1989

F. oxysporum f.
sp. melonis

Fusarium wilt of
watermelon

Châteaurenard,
France

Competition with soil microbiota including non-
pathogenic Fusarium

Louvet et al., 1976; Alabouvette et al.,
1985

(Continued)
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melonis on melon (in France; Louvet et al., 1976), F. oxysporum f.

sp. niveum on watermelon (in Florida; Larkin et al., 1993), F.

oxysporum f. sp. radicis-cucumerinum on cucumber (in Israel;

Klein et al., 2013), F. udum on pigeon-pea (in India; Vasudeva

and Roy, 1950), and F. graminearum on wheat (in Serbia;

Todorović et al., unpublished data). Therefore, unlike with other

pathogenic taxa, suppressiveness is documented across a wide range

of Fusarium pathosystems. It also appears that suppressiveness to

Fusarium diseases occurs in numerous parts of the world (Figure 3).
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4.3 Natural and induced specific
suppressiveness to Fusarium diseases

Specific suppressiveness is sometimes an intrinsic property of

the soil and persists over years, despite changing ecological

conditions related to crop rotation. This natural/long-term

suppressiveness is well documented for several pathosystems, for

instance in Swiss soils suppressive to tobacco black root rot (T.

basicola) near Morens (Stutz et al., 1986). Suppressive and
TABLE 3 Continued

Pathogen Disease Country Suppression mechanism References

F. oxysporum f.
sp. fragariae

Fusarium wilt of
strawberry

Korea Streptomyces, wilt-suppressive soil that was developed
through monoculture

Cha et al., 2016

F. oxysporum f.
sp. dianthi

Vascular wilting
disease of
carnations

Albenga, Italy Competition with other Fusarium Garibaldi et al., 1983

F. oxysporum f.
sp. batatas

Fusarium wilt on
sweet potato

California, USA No data Smith and Snyder, 1971

F. oxysporum f.
sp. cubense

Fusarium wilt of
banana disease

Ayodhya district,
India

Bacillus licheniformis producing anti-fungal secondary
metabolites

Yadav et al., 2021

F. oxysporum f.
sp. cubense

Fusarium wilt of
banana disease

Gran Canaria, Spain Sodium in soil Domıńguez et al., 1996

F. oxysporum f.
sp. cubense

Fusarium wilt of
banana disease

Indonesia Pseudomonas and Burkholderia Nisrina et al., 2021

F. oxysporum f.
sp. cubense

Fusarium wilt of
banana disease

Honduras, Costa
Rica, Panama and
Guatemala

Clay mineralogy, presence of montmorillonite-type clay
in suppressive soil

Stotzky and Torrence Martin, 1963

F. oxysporum f.
sp. cubense

Fusarium wilt of
banana disease

Hainan, China Pseudomonas inducing jasmonate and salicylic acid
pathways and shared core microbiome in suppressive
soils

Shen et al., 2015b; Zhou et al., 2019;
Shen et al., 2022; Lv et al., 2023; Wang

et al., 2023

F. oxysporum f.
sp. cubense

Fusarium wilt of
banana disease

Yunnan, China Bacillus and Sphingomonas negatively correlated to F.
oxysporum. B. velezensis strain YN1910 presented
biocontrol properties

Fan et al., 2023

F. oxysporum f.
sp. cucumerinum

Fusarium wilt of
cape gooseberry

Colombia Higher prevalence of certain bacterial taxa Bautista et al., 2023

F. oxysporum f.
sp. physalis

Fusarium wilt of
cucumber

California, USA Pseudomonas siderophores and lytic bacteria Sneh et al., 1984

F. oxysporum f.
sp. lini

Fusarium wilt of
flax

California, USA Pseudomonas siderophores Kloepper et al., 1980

F. oxysporum f.
sp. lini

Fusarium wilt of
flax

Carmagnola and
Santena, Italy

Competition with other Fusarium Tamietti and Pramotton, 1990

F. oxysporum f.
sp. lycopersici

Fusarium wilt of
tomato

Noirmoutier, France Non-pathogenic F. oxysporum Tamietti and Alabouvette, 1986

F. oxysporum f.
sp. lycopersici

Fusarium wilt of
wheat

Albenga, Italy Non-pathogenic F. oxysporum inducing plant defense Tamietti and Matta, 1984

F. oxysporum f.
sp. lycopersici

Fusarium wilt of
tomato

Albenga, Italy Non-pathogenic F. oxysporum inducing plant defense Tamietti et al., 1993

F. oxysporum f.
sp. niveum

Fusarium wilt of
watermelon

Florida, USA Wilt-suppressive soil that was developed through
monoculture

Larkin et al., 1993

F. oxysporum f.
sp. radicis-
cucumerinum

Cucumber crown
and root rot

Israel Suppressiveness induced by mixing sandy soil with wild
rocket (Diplotaxis tenuifolia) debris under field
conditions

Klein et al., 2013

F. udum Butl. Wilt of pigeon-pea Dehli, India Soil microbiota Vasudeva and Roy, 1950
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conducive soils may be located at small geographic distances in the

landscape, and differences in plant disease incidence between

neighbouring fields that share similar climatic conditions and

agronomic practices are attributed by the differences in the

resident microbiota in these soils (Almario et al., 2014). Natural

suppressiveness has also been extensively studied in the case of

Fusarium diseases, in particular with the Fusarium wilt suppressive

soils of Salinas Valley (California) or Châteaurenard (France). In

these soils, Fusarium wilt disease remains minor despite the long

history of cultivation of different crops, and the introduction of

small amount of these soils to sterilized suppressive soil or

conducive soil significantly decreased Fusarium wilt disease

incidence (Scher and Baker, 1980; Alabouvette, 1986). In both

locations, the small level of disease in plants cannot be attributed

to the absence of Fusarium in the soil, but rather to plant protection

by the soil microbiota (Sneh et al., 1984; Alabouvette et al., 1985;

Siegel-Hertz et al., 2018), as found in later investigations (Bautista

et al., 2023).

Specific disease suppressiveness can also result from particular

farming practices leading to the built-up of a plant-protecting

microbiota. Often, this takes place following crop monoculture,

typically after early disease outbreak, and is examplified by take-all

decline of wheat (Weller et al., 2002; Sanguin et al., 2009) and barley

(Schreiner et al., 2010). Induced suppressiveness is initiated and

maintained by monoculture, in the presence of the pathogen

Gaeumannomyces graminis var. tritici (Weller et al., 2002). Soil
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suppressiveness to Fusarium diseases is usually natural, but cases of

induced suppressiveness are also documented. Thus, soils found in

Hainan island (China) that were grown for years with banana in

confontration with pathogenic F. oxysporum displayed rhizosphere

enrichment in microbial taxa conferring protection from banana wilt

(termed banana Panama disease) (Shen et al., 2022), watermelon

monoculture in Florida induced suppressiveness to wilt caused by F.

oxysporum f. sp. niveum (Larkin et al., 1993), and 15 years of

strawberry monoculture in Korea triggered suppressiveness to wilt

caused by F. oxysporum f. sp. fragariae (Cha et al., 2016). Soil addition

of wild rocket residues resulted in suppressiveness to cucumber crown

and root rot (F. oxysporum f. sp. radicis-cucumerinum) in Israel (Klein

et al., 2013), whereas suppressiveness to Fusarium wilt can also be

induced by microbial biofertilizer inoculants reshaping the soil

microbiome (Xiong et al., 2017). Thus, organic fertilizer containing

B. amyloliquefaciensW19 enhanced levels of indigenous Pseudomonas

spp. and provided suppression of Fusarium wilt of banana (Tao et al.,

2020). The combined action of B. amyloliquefaciens W19 and

Pseudomonas spp. is thought to cause a decrease in Fusarium

density in the root zone of banana. Organic fertilizers inoculated

with Erythrobacter sp. YH-07 controlled Fusarium wilt in tomato, as a

direct result of the bacteria and indirectly by altering the composition

of the microbial community (Tang et al., 2023). Organic fertilizer

amended with Bacillus and Trichoderma resulted in an increase in

indigenous Lysobacter spp., thus indirectly inducing suppression of

Fusarium wilt of vanilla (Xiong et al., 2017).
FIGURE 3

Geographic locations of the main field sites with soils documented to be suppressive to Fusarium diseases, in Europe including France (Noirmoutier
Island, Châteaurenard in Southeast France, and Brittany), Denmark, The Netherlands, Germany, Italy (Albenga, Carmagnola, and Santena), Gran
Canaria Island (Spain, located in the Atlantic Ocean), and Serbia, in North America (California and Florida), Central America (Honduras, Costa Rica,
Panama, and Guatemala), South America (Colombia), Asia (Korea, China, India, Israel, and Indonesia), and Africa (Morocco). Each location is marked
with the corresponding pathogen: F. oxysporum (indicated by a red dot), F. culmorum (green triangle), F. graminearum (blue square), and F. udum
(black pentagon).
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5 The microbiome of soils suppressive
to Fusarium diseases

5.1 Biocontrol microorganisms in soils
suppressive to Fusarium diseases

Many biocontrol strains originate from suppressive soils, and

they were investigated as a mean to understand disease

suppressiveness. In the case of Fusarium diseases, examples

include Pseudomonas sp. Q2-87 (P. corrugata subgroup) (Weller

et al., 2007), isolated from wheat in take-all decline soils but that

protects tomato from F. oxysporum f. sp. radicis-lycopersici,

Pseudomonas sp. C7 (P. corrugata subgroup) (Lemanceau and

Alabouvette, 1991) isolated from soil suppressive to Fusarium wilt

of tomato, and non-pathogenic F. oxysporum strains Fo47 (Fuchs

et al., 1997; Duijff et al., 1998; Fuchs et al., 1999), CAV 255 (Sajeena

et al., 2020) and Ro-3 (Bubici et al., 2019). Based on the biocontrol

traits thus identified, the corresponding microbial functional groups

have been characterized in suppressive vs conducive soils, using

isolate collections, molecular fingerprints or sequencing.

Fluorescent Pseudomonas bacteria, especially those producing the

antifungal metabolite 2,4-diacetylphloroglucinol, have been

extensively targeted in take-all-decline soils (Cook and Rovira,

1976; Weller et al., 2002; Weller et al., 2007) and soils suppressive

to black root rot (Stutz et al., 1986; Laville et al., 1992; Kyselková

and Moënne-Loccoz, 2012), whereas studies on soils suppressive to

R. solani diseases have focused on Pseudomonas spp. producing

antifungal lipopeptides (Mendes et al., 2011), Streptomyces spp.

producing volatile metabolites (Cordovez et al., 2015) and

Paraburkholderia graminis producing sulfurous volatile

compounds (Carrión et al., 2018). In the case of soils suppressive

to Fusarium diseases, competition with pathogenic Fusarium

species is considered important, involving the entire soil

microbiota or more specifically non-pathogenic Fusarium strains

in Châteaurenard soils (Louvet et al., 1976; Alabouvette, 1986), or

fluorescent Pseudomonas (iron competition; Scher and Baker, 1980;

Sneh et al., 1984) in soils of Salinas Valley (California) or

Châteaurenard (France). The role of extracellular lytic enzymes

can be significant, as soil microbiota may protect barley from

Fusarium culmorum via a more efficient cellulolytic activity than

the pathogen, which consequently is outcompeted for nutrients

(Rasmussen et al., 2002). Suppressiveness may result in part from

chitinolytic effects of the soil microbiota against the pathogen, based

on inhibition of Fusarium fungi by chitinases in vitro and effective

protection of plant by chitinase-producing inoculants (Veliz et al.,

2017). Other modes of action evidenced include the production of

antifungal secondary metabolites in wilt-suppressive soils, such as a

new thiopeptide by Streptomyces (Cha et al., 2016) and phenazines

by Pseudomonas spp. (Mazurier et al., 2009), and immunity

stimulation in banana (induction of the jasmonate and salicylic

acid pathways) by fluorescent Pseudomonas (Lv et al., 2023).
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5.2 Microbial diversity in soils suppressive
to Fusarium diseases

Specific disease suppressiveness is attributed to the contribution

of a few plant-benefical populations, but comparison of suppressive

vs conducive soils has evidenced differences in the occurrence or

prevalence of multiple taxa, in the case of suppressiveness to take all

(Sanguin et al., 2009; Schreiner et al., 2010; Chng et al., 2015), black

root rot (Kyselková et al., 2009), R. solani-mediated damping-off

(Mendes et al., 2011), or potato common scab (Rosenzweig et al.,

2012). Similar findings were made with soils suppressive to

Fusarium diseases. No single phylum was uniquely associated

with F. oxysporum wilt suppressiveness in Korean soils, even

though Actinomycetota (formerly Actinobacteria) was identified as

the most prevalent bacterial taxa colonizing strawberry in

suppressive soils (Cha et al., 2016). Likewise, the bacterial genera

Devosia, Flavobacterium and Pseudomonas were more abundant

(and the pathogen less abundant) in Chinese soils suppressive to

banana wilt than in conducive soils, and Pseudomonas inoculants

isolated from suppressive could control the disease (Lv et al., 2023).

Compared with conducive soil, Fusarium wilt suppressive soil from

Châteaurenard displayed higher relative abundance of

Adhaeribacter, Arthrobacter, Amycolatopsis, Geobacter, Massilia,

Microvirga, Paenibacillus, Rhizobium, Rhizobacter, Rubrobacter

and Stenotrophomonas (but not Pseudomonas) (Siegel-Hertz et al.,

2018). However, differences were also found in the fungal

community, with several fungal genera (Acremonium ,

Ceratobasidium, Chaetomium, Cladosporium, Clonostachys,

Mortierella, Penicillium, Scytalidium, Verticillium, but also

Fusarium) detected exclusively in the wilt suppressive soil (Siegel-

Hertz et al., 2018). Data also pointed to a greater degree of microbial

complexity in suppressive soils, with particular co-occurrence

networks of taxa (Bakker et al., 2014; Lv et al., 2023). In German

and Dutch soils, co-occurrence networks showed that the

suppressive soil microbiota involves a guild of bacteria that

probably function together, and in two of the suppressive soils

this guild is dominated by Acidobacteriota (formerly Acidobacteria)

(Ossowicki et al., 2020).

Many studies focused on a few, geographically-close soils, which

does not provide a global view on the importance of microbial

diversity. However, two studies have considered geographically

diverse agricultural soils suppressive to Fusarium wilt. Various

Chinese soils suppressive to banana wilt mediated by F.

oxysporum were shown to share a common core microbiota,

specific to suppressive soils, which included the genus

Pseudomonas (Shen et al., 2022). In a wider range of soils from

the Netherlands and Germany, soils suppressive to F. culmorum-

mediated wilt of wheat did not display a specific bacterial species

that correlated with suppressiveness (Ossowicki et al., 2020). There

was no relation either with soil physicochemical composition (i.e.

soil type, pH, contents in C, N, or bioavailable Fe, K, Mg, P) or field
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history, yet suppressiveness was microbial in nature, as sterilizing

suppressive soils made them become conducive. This suggests that

each suppressive soil may harbor its own set of phytobeneficial

bacteria, supporting the notion of functional redundancy between

microbiomes, meaning that different microbiomes may share

common functionalities despite taxonomic differences in the

microbial actors involved (Lemanceau et al., 2017). Taken

together, this might be explained by the fact that protection of

wheat from F. culmorum-mediated wilt corresponds to a case of

natural suppressiveness (Ossowicki et al., 2020), where

biogeographic patterns are probably important, whereas soils

suppressive to Fusarium wilt of banana are induced by

monoculture (Wang et al., 2019; Shen et al., 2022), with

convergent effects resulting from similar banana recruitment

across different soil types.

To go beyond individual analyses considered separately, we re-

analyzed sequence data from five investigations comparing disease-

suppressive and conducive soils of cultivated plants (flax,

watermelon, bananas, and wheat) infected by different Fusarium

species (F. oxysporum or F. culmorum). At the level of bacterial

phyla, fluctuations among Châteaurenard (flax-F. oxysporum;

Siegel-Hertz et al., 2018), Hainan (banana-F. oxysporum; Shen

et al., 2022) (Figure S1A) and Dutch/German (wheat-F.

culmorum; Ossowicki et al., 2020) (Figure S1B) suppressive soils

were important, as were those among their conducive counterparts,

and the comparison between suppressive and conducive soils at

these locations was not fruitful. In another study, fluctuations

among other Hainan (banana-F. oxysporum; Zhou et al., 2019)

suppressive or conducive soils were of less magnitude, but again the

comparison was not insightful (Figure S1B). In contrast, Jiangsu

(watermelon-F. oxysporum; Wang et al., 2015) suppressive soils

displayed a higher relative abundance of Acidobacteriota and

Pseudomonadota than in conducive soils (Figure S1B), but this

property was not relevant when considering the other locations/

plant species/Fusarium species. Based on heatmap comparisons

(Figure S2), the main finding was the lower prevalence of the

Bacillota phylum in the Jiangsu (watermelon-F. oxysporum)

suppressive vs conducive soils, which was restricted to the case of

these soils.

At the level of bacterial genera, the comparison of

Châteaurenard (flax-F. oxysporum), Hainan (banana-F.

oxysporum) or Dutch/German (wheat-F. culmorum) soils did not

lead to the identification of indicator taxa (Figures 4, S3), but at

Jiangsu (watermelon-F. oxysporum) the genera Bacillus, Dongia,

Rhodoplanes and Terrimonas were less prevalent and the genera

Ferruginibacter, Flavobacterium, Pseudomonas and Sphingomonas

more prevalent in suppressive soils than in conducive soils (Figure

S3A). Therefore, the comparison between suppressive and

conducive soils was sometimes meaningful at the local scale, but

typically not when considering a wider range of geographic or

biological (plant and Fusarium species) conditions together. In

other words, the information available so far points that

suppressiveness to Fusarium diseases relies on microbial selection

processes by roots that depend on local conditions, i.e. probably

related to microbial biogeography, soil type, plant species, Fusarium

genotype and most likely other local factors as well.
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6 Variability and management of soil
suppressiveness to Fusarium diseases

6.1 Environmental factors influencing soil
suppressiveness to Fusarium diseases

Environmental conditions in soil may influence Fusarium

autecology, the composition and activity of the soil microbial

community, the tripartite interactions between this microbiota,

Fusarium pathogens and the plant, and ultimately the level of

disease suppressiveness (Marshall and Alexander, 1960; Amir and

Alabouvette, 1993; Mazzola, 2002; Czembor et al., 2015). Key

environmental factors in this regard include soil physicochemical

properties and weather conditions (Weber and Kita, 2010).

Early work on the suppressiveness of soils to vascular Fusarium

diseases drew attention to the positive role of certain abiotic factors

and, in particular, montmorillonite-type clays (Stover, 1956; Stotzky

and Torrence Martin, 1963). In addition, higher clay contents may

contribute to reduced infestation by Fusarium (Kurek and Jaroszuk-

Ściseł, 2003; Deltour et al., 2017), by altering oxygen diffusion, pH

buffering and nutrient availability (Orr and Nelson, 2018). Höper

et al. (1995) showed that the level of suppressiveness to Fusarium

wilt of flax increased in soils amended with montmorillonite,

kaolinite or illite at pH 7. A negative correlation between soil pH

and Fusarium disease severity was reported in experiments with flax

(Senechkin et al., 2014), strawberry (Fang et al., 2012) and banana

(Shen et al., 2015a). However, the correlation between pH and

Fusarium wilt incidence was positive in studies on banana (Peng

et al., 1999) and watermelon (Cao et al., 2016). Certain experiments

acidified soil originally at pH 8.0 (Peng et al., 1999) or 7.4 (Cao et al.,

2016), whereas others limed an acidic soil (Fang et al., 2012;

Senechkin et al., 2014; Shen et al., 2015a). Inconsistencies may

relate to the complexity of pH effects on Fusarium pathogens and

diseases, and possible interactions with soil properties, Fusarium

and plant genotypes, or other experimental conditions. In addition,

soil suppressiveness to Fusarium wilt necessitates sufficient levels of

nitrogen, as disease incidence negatively correlates with the NH4
+

and NO3
– contents in the soil (Li et al., 2016; Meng et al., 2019).

Moreover, the addition of calcium to the soils suppressed Fusarium

wilt in several soil type × plant conditions (Spiegel et al., 1987; Peng

et al., 1999; Gatch and du Toit, 2017). In Brittany, F. graminearum

growth positively correlated with manganese and iron contents in

the soil (Legrand et al., 2019). A positive correlation was found

between hemicellulose concentration and suppression of Fusarium

wilt in tomato and carnation (Castaño et al., 2011), as well as

cellulose concentration and suppression of Fusarium seedling blight

of barley (Rasmussen et al., 2002). This is attributed to the activity of

cellulolytic microorganisms that limit Fusarium growth, as lower

organic matter content (following decomposition) would reduce

resources supporting this microbiota and disease suppression (Orr

and Nelson, 2018).

Climatic conditions, notably temperature and precipitation may

strongly affect the incidence of Fusarium diseases (Orr and Nelson,

2018). Phytopathogenic species F. oxysporum, F. solani, F.

verticillioides, F. graminearum and F. culmorum develop best
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under humid conditions, at water activity above 0.86 (Table S1)

(Thrane, 2014). Severity of Fusarium wilt in lettuce (Scott et al.,

2009; Ferrocino et al., 2013) and FHB in wheat was positively

correlated with soil temperature (Xu et al., 2007; Nazari et al., 2018).

For example, Fusarium wilt incidence significantly increased when

lettuce was grown at 22-26°C instead of 18-22°C (Ferrocino et al.,

2013). Similarly, in both conducive and suppressive soils, severity of

Fusarium wilt of banana was significantly increased when

temperature was raised from 24°C to 34°C (Peng et al., 1999).
6.2 Farming practices and the
management of soil suppressiveness to
Fusarium diseases

As many other soil-inhabiting pathogenic fungi, the Fusarium

spp. can overwinter as mycelium in plant debris or dormant
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structures in the soil, which leads to cause the initial infection of

plants in the following season (Nelson et al., 1994; Janvier et al.,

2007; Leplat et al., 2013; Xu et al., 2021). Therefore, cultural

practices removing the primary inoculum of the pathogen from

overwintering soils are useful to prevent future infection (Voigt,

2002). However, farming practices also influence soil

suppressiveness by shaping the rhizosphere microbial community

(Campos et al., 2016) and stimulating the activity of beneficial

rhizosphere microorganisms (Janvier et al., 2007). In this context,

various agricultural practices, such as crop rotation/monocropping,

tillage, organic amendments and fertilisers, are important to

consider to develop suppressiveness-based control methods in

farm fields (Janvier et al., 2007; Fu et al., 2016).

Except in the few cases where monoculture induces

suppressiveness to Fusarium diseases (Larkin et al., 1993; Shen

et al., 2022), cropping systems based on rotation of different plant

species result in reduced survival of soil-borne pathogen propagules
B

A

FIGURE 4

Heatmap of the major bacterial genera detected in the rhizosphere of plants grown in soils suppressive or conducive to different Fusarium diseases,
based on analysis (File S1) of selected studies (Shen et al., 2015b; Siegel-Hertz et al., 2018; Wang et al., 2019; Zhou et al., 2019; Ossowicki et al.,
2020). (A) The 20 most abundant genera in soils conducive or suppressive to diseases caused by Fusarium oxysporum. In Siegel-Hertz et al. (2018),
suppressive soils were assessed after Fusarium inoculation or without. (B) The 20 most abundant genera in soils conducive or suppressive to
diseases caused by Fusarium culmorum. The color intensity in each cell indicates the relative abundance (%) of a genus in each study for each plant
type. When relevant, dotted lines are used to separate pathogen-inoculated samples from non-inoculated samples (in Châteaurenard) or samples
from different fields. More details on individual conditions are available in Table S2.
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over the short term (Winter et al., 2014). Crop rotation may reduce

severity and incidence of diseases caused by Fusarium spp. (Wang

et al., 2015; Khemir et al., 2020). For example, compared with the

tomato monoculture, soil management under wheat - tomato

rotation changes soil microbial composition by increasing the

abundance of microbial taxa such as Bacillus, Paenibacillus,

Pseudomonas, Streptomyces, Aspergillus, Penicillium and

Mortierella, which may control Fusarium wilt of tomato (De

Corato et al., 2020). Reduced incidence of F. pseudograminearum

and F. culmorum in the soils under cereal – legumes rotation

management may be due to the non-host character of the

legumes (Evans et al., 2010). However, not all crop rotations lead

to reduced disease pressure (Ranzi et al., 2017). In the case of the

FHB, it was advocated to rotate wheat and corn with crops like

soybean, until it was shown that F. graminearum can also cause

disease in soybean, as it has a wide range of hosts (Marburger et al.,

2015). This suggests that there is no common rule regarding the

relationship between crop rotation and Fusarium disease incidence.

Crop residues of high cellulose content promoted the activity of

beneficial cellulolytic microorganisms and limited the development

of Fusarium culmorum (Rasmussen et al., 2002), as organic

amendments represent a favorable environment for beneficial

microorganisms that are able to combat phytopathogenic

Fusarium species (Maher et al., 2008; Cuesta et al., 2012).

Accordingly, organic amendments like animal manure, solid

wastes and different composts are often used to improve soil

health by delivering nutrients to the soil and also by stimulating

beneficial microbiota (Fu et al., 2016; Mousa and Raizada, 2016).

Thus, soils with added organic amendments exhibited inhibitory

effects against F. verticillioides by reducing the production of a

fungal pigment and sporulation, consequently disabling fungal

spread (Nguyen et al., 2018). Addition of vermicompost reduced

tomato infection by F. oxysporum f. sp. lycopersici (Szczech, 1999)

and mulched straw contributed to the suppression of seedling blight

caused by F. culmorum (Knudsen et al., 1999). Soils supplemented

with coffee residue compost or rapeseed meal exhibited

suppressiveness to F. oxysporum-mediated wi l t , and

microorganisms isolated from supplemented soils inhibited F.

oxysporum growth on agar plates (Mitsuboshi et al., 2018).

Carbon addition to soil influenced the soil microbiome,

enhancing Fusarium- inhibitory populations from the

Streptomyces genus (Dundore-Arias et al., 2020). However,

increasing organic matter content may promote Fusarium

survival in certain (rare) cases. One study tested the effects of 18

composts (made from different mixtures of manure, domestic

biowaste and green waste) on Fusarium wilt disease suppression,

caused by F. oxysporum f. sp. lini, and it was shown that only one

compost did not positively affect the disease suppression

(Termorshuizen et al., 2006). The efficiency of organic

amendments in controlling plant diseases is determined by the

pathosystem, the application rate, the kind of amendment and the

level of maturity of composts or disintegration phase of crop

residues (Janvier et al., 2007).

Tillage, which is one factor influencing organic matter

decomposition, appears to have contrasting effects on soil

suppressiveness. Under conventional tillage, tillage depth appears
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to play a crucial role in soil survival of Fusarium, such that the

deeper the tillage, the lower the abundance of Fusarium species

(Steinkellner and Langer, 2004). This can be partly explained by the

fact that the pathogen is displaced from its niche, reducing its ability

to survive (Bailey and Lazarovits, 2003), and the rate of

decomposition of buried residues is faster than at the soil surface

(Leplat et al., 2013). The carbon released during these

decomposition processes increases the activity of the soil

microbiota, thereby improving the overall functioning of the soil

(Bailey and Lazarovits, 2003). Under conservation tillage, surface

residues persist and can act as a long-term source of inoculum for

plant infection by F. verticillioides, F. proliferatum and F.

subglutinans, as they can colonise crop residues and produce

overwintering spores that often survive the period when plants

are absent from the agrosystem (Bockus and Shroyer, 1998; Cotten

and Munkvold, 1998; Pereyra et al., 2004). This is consistent with

results suggesting that conservation tillage and leaving crop residues

in situ increase Fusarium abundance (Govaerts et al., 2008; Wang

et al., 2020). For example, spores of Fusarium species could be

recovered from plant residues more than two years after harvest

(Pereyra et al., 2004). In certain cases, lower occurrence of plant

infection by F. culmorum, F. equiseti (Weber et al., 2001) and F.

pseudograminearum (Theron et al., 2023) was found under

conservation tillage compared with conventional tillage. These

contrasting results might be due to differences in environmental

factors, cropping patterns and soil types, which could modulate

interactions between soil conditions, Fusarium ecology and plant

physiology (Sturz and Carter, 1995). The use of simplified tillage

practices was proposed to reduce F. culmorum abundance, by

mixing crop residues with the topsoil layer to promote the growth

of beneficial straw-decomposing microorganisms (Weber and

Kita, 2010).

Different fertilizers have different effects on phytopathogenic

Fusarium spp. On one hand, the development of FHB caused by F.

culmorum and F. graminearum increased with inorganic nitrogen

fertilization (Lemmens et al., 2004), and on the other hand, nitrite

could reduce the population of F. oxysporum (Löffler et al., 1986).

Besides, higher doses of nitrogen may contribute to higher

accumulation of Fusarium mycotoxins (Podolska et al., 2017).

The addition of phosphorus fertilizer, in the form of P2O5,

significantly reduced Fusarium-caused wilting in chickpea, lentil

and lupine, in both greenhouse and field conditions (Elhassan et al.,

2010). Organic fertilizers can lead to an increase in indigenous

microbial populations, thus contributing to suppression of

Fusarium wilt disease (Montalba et al., 2010; Raza et al., 2015).

When grown with the addition of organic N fertilizer, highbush

blueberry exhibited increased tolerance to F. solani, in parallel to

increased soil microbial activity and mycorrhizal colonization

(Montalba et al., 2010).
7 Conclusion and outlook

Disease-suppressiveness of soils is a useful model to understand

microbial phytoprotection and develop sustainable plant protection

strategies for soils devoid of this property. In this review, we
frontiersin.org

https://doi.org/10.3389/fpls.2023.1228749
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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summarized the current knowledge on Fusarium phytopathogens,

the available control methods and soils suppressive to Fusarium

diseases, with the underlying mechanisms involved in the

suppression. On one hand, extensive information is available on

environmental and microbial properties responsible for

suppressiveness to Fusarium diseases. One prominent feature is the

diversity of Fusarium-based pathosystems for which suppressive soils

are documented, in terms of Fusarium species (often F. oxysporum,

but not only), host plants (both monocots and dicots), types of

disease (often wilt, but not only), geographic locations of soil and

farming conditions, and types of suppressiveness (i.e. natural

suppressiveness to Fusarium diseases, but also monoculture-

induced suppressiveness as well as fungistasis towards Fusarium

pathogens). This diversity is paralleled by differences in microbiota

composition and diversity associated with disease control in the

different cases of suppressiveness. On the other hand, despite the

fact that soils suppressive to Fusarium diseases have been studied for

decades, they are still poorly understood in terms of microbiota

functioning, and knowledge remains fragmented.

On this basis, additional research is needed to integrate further

the scientific approaches used to decipher suppressiveness to

Fusarium diseases. First, by combining complementary assessment

methodology with current next-generation sequencing and ecological

networks research, and incorporating experimental strategies to

manipulate and transplant rhizosphere microbiome (or single

microorganisms) of plants grown in suppressive soils to those in

conducive soils to go beyond correlative work, as started recently (Ye

et al., 2020; Jiang et al., 2022). Second, by extending the range of soil

conditions investigated, and develop meta-analyses to estimate key

microbiota differences between suppressive and conducive soils, as

pioneered by Yuan et al. (2020). Third, by considering a wider range

of biological actors, including beneficial fungi (often neglected), soil

fauna (likely to influence microbial communities, Fusarium

vectorisation, and plant health; e.g. Dita et al., 2018; Wagner et al.,

2022). Fourth, by taking into account plant genetics, behavior and

physiological responses to Fusarium pathogens (e.g. Liu et al., 2019).

Therefore, there is a need for a more multidisciplinary approach to

understand microbiota functioning in soils suppressive to

Fusarium diseases.
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Blanco, J. (2019). Biological control agents against Fusarium wilt of banana. Front.
Microbiol. 10, 616. doi: 10.3389/fmicb.2019.00616

Burgess, L. W., and Bryden, W. L. (2012). Fusarium: A ubiquitous fungus of global
importance. Microbiol. Aust. 33, 22–25. doi: 10.1071/MA12022

Burgess, L. W. B., Summerell, A., Backhouse, D., Benyon, F., and Lević, J. (1996).
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Kuć, J. (1995). “Induced systemic resistance— an overview,” in Induced Resistance to
Disease in Plants. Eds. R. Hammerschmidt and J. Kuć (Dordrecht: Springer
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