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Abstract: Phenolic compounds of 25 newly introduced strawberry cultivars were profiled using
spectrophotometry, electron paramagnetic resonance (EPR) spectroscopy, and high-performance
liquid chromatography-mass spectrometry. Total phenolic and anthocyanin content (TPC and TACY,
respectively), as well as vitamin C, and concentrations of individual phenolic compounds in fruits
were evaluated to identify the most promising cultivars according to their phenolic profile. The
highest values of TPC, TACY, and vitamin C were recorded in ‘Premy’ (1.53 mg eq GA g~! FW),
‘Sandra’ (30.60 mg eq Pg-3-g 100 g~! FW), and “Laetitia’ (56.32 mg 100 g~! FW), respectively. The
DPPH and eOH radicals scavenging activity of fruit methanolic extracts was estimated using EPR
spectroscopy. All cultivars are almost uniformly effective in the scavenging of ¢OH radical, while
‘Tea’, ‘Premy’, and ‘Joly’ were marked as highly potent cultivars (over 70%) in terms of DPPH-
antiradical activity. Specific peroxidase activities were the highest in ‘Garda’, ‘Federica’, and “‘Rumba’
(0.11, 0.08, and 0.06 U mg*1 prot, respectively). ‘Laetitia’, ‘Joly’, ‘Arianna’, “Tea’, and ‘Mila’ cultivars
were distinguished from others as the richest concerning almost all flavonoids and phenolic acids,
including some other parameters of bioactivity. These cultivars could be recommended to consumers
as functional fruit foods.

Keywords: electron paramagnetic resonance (EPR) spectroscopy; HPLC-MS; anthocyanins; flavonols;
flavan-3-ols; hydroxycinnamic acids; peroxidase; antioxidant; strawberry fruit

1. Introduction

Today, consumer awareness of the impact of fruit intake on overall health and well-being
is constantly on the rise. Therefore, the consumption of berry fruits, especially strawberries,
has been promoted as valuable due to their overall health benefit properties [1].

Strawberry (Fragaria x ananassa Duch.) is a good source of essential vitamins and
minerals [2] and significant levels of biologically active components, such as phenolic
compounds [3], which, apart from defining consumer acceptance, have essential positive
effects on the human diet and health [1]. Strawberry fruit contains natural antioxidant
substances such as anthocyanins, flavonoids, and phenolic acids and also has high a level of
antioxidant enzymes and oxygen radical scavenging activities, which could effectively and
synergistically perform as free radical inhibitors and provide protection against oxidative
damage [4]. The diversity and richness in the content of phenolic compounds make straw-
berries recommendable for human consumption. They can help in reducing incidences
of chronic diseases, elevated blood pressure, and platelet aggregation, while at the same
time having a positive effect on the immune system, by means of good anti-inflammatory,
antibacterial, and antiviral response [5]. Considering that strawberries represent 40% of
the total berry consumption worldwide [6], the health-promoting potential of strawberries
implies their serious contribution as a dietary source in the human diet.
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The phenolic content of strawberry fruits can vary depending on the cultivar, growing
location, maturity stage, agricultural practice, and environmental and storage conditions [7-9].
In many studies, the antioxidant properties of strawberries are mainly linked to the polyphe-
nols they are rich in [10-13]. A significant part of the antioxidant capacity of these fruits comes
from flavonoids that are subdivided into several subgroups: flavones, flavonols, flavanones,
flavanonols, flavanols or catechins, anthocyanins, and chalcones [14]. Anthocyanins are quan-
titatively the most represented in strawberry, responsible for the red color of the fruit, but they
also have strong antioxidant properties [15]. The predominant anthocyanin in strawberry fruit
is pelargonidin-3-O-glucoside [16-18]. The main biological functions of flavonols in fruit are
attributed to protection from harmful UV light and pathogens [19]. In addition to their involve-
ment in biochemical signaling pathways, their antioxidant effect is extremely important for a
large number of physiological and pathological processes. Flavan-3-ols are usually denoted
by the term ‘flavanols’, representing a subgroup of flavonoids that are powerful antioxidants
mainly abundant in the external tissues of fruit [20]. Major flavonoids in strawberries are
catechin (belonging to the flavan-3-ol group), as well as quercetin and kaempferol derivatives
(i.e., flavonols group) [18,21], which have been shown to have antioxidant and anticancer
properties [10,22,23]. Moreover, hydroxycinnamic acid derivatives play an important role in
browning reactions during maturation due to their abundance and diversity in fruit flesh [24],
represented mainly by coumaroyl glucose in all cultivars.

Hakala et al. measured high concentrations of ascorbic acid, potassium, magnesium,
iron, zinc, and calcium in strawberries [21]. Ascorbic acid has many roles, but one of the
most important is the capacity to act as a reducing agent, increasing the effects of oxidase
enzymes by reducing o-quinones to o-diphenolics [22]. This indicates that ascorbic acid
also acts as an antioxidant by preventing DNA damage caused by free radicals, quenching
oxidants that can lead to the development of cataracts and endothelial cell dysfunction,
and that it can protect against atherosclerosis by reducing leukocyte adhesion caused by
low-density lipoproteins [23].

In protection against oxidative damage, various oxidase enzymes can also play a
significant role. Their increased activity in fresh strawberries can cause significant quality
deterioration, including loss of color and texture and the formation of unwanted brown
pigments [25]. Peroxidases (POD; EC 1.11.1.7) catalyze the oxidation of structurally diverse
phenolic substrates using reactive oxygen species over three basic cycles: (1) in the perox-
idative cycle, as a result of oxidation, a phenoxyl radical is formed; (2) in the oxidative cycle
they produce H,O,; and (3) in the hydroxyl cycle, a highly reactive hydroxyl radical (¢OH)
is formed [26]. Together with polyphenol oxidase (PPO; EC 1.14.18.1), they are responsible
for the ‘enzymatic tanning’ of fruits, which leads to the rapid degradation of nutritional
and structural components and drastically shortens the shelf life and acceptability by
consumers [27].

Our research aim was to quantify and characterize phenolic compounds in 25 straw-
berry cultivars and correlate them with their antioxidant capacity. Thus, phenolic compo-
nents may be used as a selection criterion for defining the quality of strawberry fruit with
well-demonstrated potential health benefits. The intercultivar variation of phenolic profiles
could be employed for the promotion of promising cultivars with improved quality traits
that fulfill consumer preferences, contributing to the ‘educated consumer concept’.

2. Results and Discussion
2.1. Phytochemical Composition

The concentration and composition of phenolic compounds strongly affect the sensory-
organoleptic properties and nutritional values of strawberry fruit, thus contributing to their
possible health benefits. Therefore, the increase in consumption of high-quality strawberry
fruit should be associated with both high consumer acceptance, due to its sensory attributes,
and the presence of bioactive compounds.

Previous studies reported variation in phenolic content among strawberry cultivars
focusing on polyphenol-rich cultivars that may thus be an important source of health-



Plants 2022, 11, 3566

30f18

promoting compounds in the human diet [3,18,28]. Besides phenolic richness, content of
vitamin C has been reported to be an effective enhancer of the oxidative homeostasis of
strawberry fruit [28,29], so cultivars rich in these functional ingredients should be promoted
as promising.

The results of the total phenolic content (TPC) of 25 strawberry cultivars are given in
Table 1.

Table 1. Total phenolic (TPC), anthocyanin (TACY), and vitamin C (Vit C) content in strawberry
fruit extracts.

Cultivars TPC TACY Vit C
(mg eq GA g~ 1 FW) (mg eq Pg-3-G 100 g—1 FW) (mg 100 g~ 1 FW)
Roxana 0.49 +0.04 g)h 15.89 £ 0.23 g h 52.80 £0.00b
Arosa 0.71 £0.02ef,gh 11.05 +£ 0.16 h,i,j,k 55.17 £ 0.98 a,b
Joly 0.88 = 0.09b,c,de 22.14 + 0.68 b,c,d,e f 42.83 +1.27d
Asia 0.66 £ 0.00 d e f,gh 1570 = 1.62 g,h 42.83 +1.27d
Alba 0.49 +0.03 h 790 £1.93jk1 42.80 +1.04d
Jeny 0.50 £ 0.12f,gh 3.08+0411 39.82 +0.42d
Laetitia 1.07 £ 0.03 b,c 15.83 +1.22 f,g/h 56.32 + 1.87 a
Garda 0.54 £0.03 f,g,h 6.79 £0.361,j,k,1 54.57 + 1.53 a,b
Lycia 1.28 £ 0.08 a,b 823 £0.161jk1 4220+ 0.85d
Premy 153+ 0.25a 12.08 4+ 2.48 h,i 3417 £ 1.65¢e,f
Sibilla 1.33+0.15a 8.66 £ 0.641,j,k 3227 £ 049 f
Vivaldi 1.37 £ 0.03 a 2492 + 191 ab,c 46.70 =092 ¢
Rumba 140+ 0.10a 19.46 +325d,ef,g 49.07 +1.20¢
Clery 0.81 4+ 0.05 ¢,d,e f 8.88 £0.511,j,k 46.33 +1.27 ¢
Aprika 141 +0.10a 11.44 £ 0.26 hji,j 3490 £ 0.52 ¢,f
Quicky 1.154+0.06 b 22.56 + 0.60 b,c,d 36.27 +0.67 e
Federica 0.89 £ 0.11b,c,de 18.95 + 0.78 ¢,d e f 35.80 + 0.52 ¢,f
Lofty 0.93 +0.08 b,c,d 23.81 + 0.50 b,c,d 3393+ 1.10ef
Tea 0.76 £0.02de f,g 18.47 £ 0.69 e f,g 35.20 + 0.00 e,f
Mila 0.77 £0.04 d e f,g 2097 £ 0.20 ¢, d,e 34.60 + 1.04 e,f
Arianna 0.90 +0.03b,c,de 26.05 + 0.53 a,b 35.80 £ 0.52 ¢,f
Sandra 0.87 = 0.03 b,c,de 30.60 £ 0.15a 36.57 +0.75e
Albion 0.71 £0.01 ef,gh 11.18 £ 1.00 hji,j 48.10 = 2.08 ¢
Capri 0.69 £0.05d,efgh 5.86 + 0.26 k,1 41.04 +£2.01d
Irma 0.46 = 0.01 h 9.11 £0.4114,j,k 4223 +1.20d

Data are presented as means (1 = 3) £ standard error (SE). Values within a column with different lowercase
letters are significantly different (p < 0.05), as determined using the Duncan comparison test. FW, fresh weight;
GA, gallic acid; Pg-3-G, pelargonidin-3-O-glucoside.

TPC of strawberry extracts varied from 0.46 to 1.53 mg eq GA g~ FW. Cultivars
‘Premy’, ‘Aprika’, ‘Rumba’, “Vivaldi’, and ‘Sibilla” were dominant in TPC (1.53, 1.41, 1.40,
1.37, and 1.33 mg eq GA g’1 FW, respectively), while ‘Irma’, “Alba’, ‘Roxana’, and ‘Jeny’
had the lowest TPC (0.46, 0.49, 0.49, and 0.50 mg eq GA g~ ! FW, respectively). A previous
study [30] showed that strawberry fruits were a good source of TPC, with reported values
standing in line with our results.

Strawberry fruits are characterized by the high content and moderate diversity of
anthocyanins [31]. In the present study, total anthocyanin content (TACY) was superior
in ‘Sandra’ cultivar with a value of 30.60 mg eq Pg-3-g 100 g~! FW, followed by ‘Arianna’
and ‘Vivaldi’ (26.05 and 24.92 mg eq Pg-3-g 100 g~! FW, respectively). These results
are comparable to the content of anthocyanins determined by other authors in various
strawberry cultivars [32,33]. In contrast, an extremely low TACY value was recorded in
‘Teny’ (3.08 mg eq Pg-3-g 100 g’l FW). Pelayo et al. [34] reported that the distribution of
anthocyanin pigments in the fruit tissue of different strawberry cultivars is not uniform,
which is also reflected in differences in the visual external color of the fruit.

A comparison of homogeneous subsets of tested strawberry cultivars demonstrated that
the maximum value of vitamin C content was recorded in ‘Laetitia’ (56.32 mg 100 g~ FW),
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while ‘Sibilla’ reached its lowest point (32.27 mg 100 g~ ! FW). Previously published average
values of vitamin C in strawberry fruits [30,35] are much lower than those in our study, which
indicates that the majority of tested newly introduced cultivars are an excellent source of
vitamin C. Taking into account its antioxidant properties and metabolic functions [36], vitamin
C is an important indicator of internal fruit quality, along with phenolic compounds.

Within a Fragaria species, the overall content and changes of total phenolics, antho-
cyanins, and vitamin C are strongly affected by cultivar, more pronounced than the effect
of environmental conditions [37]. Therefore, cultivars rich in these components can be
recommended as valuable sources of health-related compounds for fresh consumption.

2.2. Antiradical Activity

Reactive oxygen species (ROS) are produced during the normal growth and metabolism
of plants [38]. Atlow concentrations, ROS are key regulators of many physiological pro-
cesses in plants such as growth and development, cell cycle, programmed cell death,
hormone signaling, and biotic and abiotic stress responses [39—41]. At higher concentra-
tions, ROS can evince detrimental effects by damaging membranes, proteins, chlorophyll,
and nucleic acids [42,43]. Hence, plants have developed different defense mechanisms,
based on antioxidative metabolic compounds and enzymes, to convert ROS into less harm-
ful products, thus regulating ROS homeostasis. Due to this feature, there is a constantly
increasing interest in the investigation of naturally occurring antioxidants from plant
material, where the fruits can be regarded as a ‘gold mine’.

Table 2. ¢OH and DPPH radical scavenging activity (%) of strawberry fruit extracts estimated
by electron paramagnetic resonance (EPR) spectroscopy in combination with the spin-trapping

technique.

Cultivars eOH DPPH
Roxana 93.85 54.16
Arosa 95.53 61.42
Joly 94.71 70.36
Asia 94.78 62.75
Alba 94.71 46.39
Jeny 94.90 61.20
Laetitia 94.82 68.32
Garda 95.31 47.71
Lycia 94.71 56.98
Premy 94.04 71.61
Sibilla 94.63 61.56
Vivaldi 95.27 65.11
Rumba 94.23 62.89
Clery 94.37 68.13
Aprika 93.63 63.95
Quicky 93.74 62.89
Federica 93.67 59.71
Lofty 94.67 66.79
Tea 94.97 78.88
Mila 94.34 53.00
Arianna 93.52 48.60
Sandra 94.04 63.98
Albion 94.71 59.06
Capri 94.49 58.63

Irma 94.00 58.77
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Figure 1. A representative spin-trapping electron paramagnetic resonance (EPR) spectra. EPR spectra
of DEPMPO/OH adducts generated by an in vitro Fenton reaction (A) and set of individual EPR

spectra of DPPH free radicals (B).

It was observed that anthocyanins have ROS-scavenging capacities up to four times
stronger than analogs of vitamin E and C, due to their high reactivity as proton and
electron donors, ability to stabilize and delocalize unpaired electrons, and capacity to
chelate transition metal ions [44]. In this regard, electron paramagnetic resonance (EPR)
spectroscopy has been successfully applied to determinate radical scavenging activity in
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different foodstuffs rich in phenolic compounds [44-46]. EPR spin-trapping is a highly
specific method that enables distinguishing between different short-lived free radical
species, each obtaining characteristic EPR spectra of the corresponding spin-adducts [47].
Spin-trap DEPMPO (5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide) attracted a lot
of attention because of its high sensitivity, adduct stability, and the ability to differentiate
between various trapped radical species [48]. Although it is an excellent method for
obtaining the specific radical fingerprint, only a few papers on the measurement of free
radical scavenging activities of anthocyanin-enriched strawberry fruits by EPR have been
published [35,49].

As shown in Table 2, strawberry extracts induced a decrease in the EPR signal of
DEPMPO/OH spin-adducts due to competition for the hydroxyl radical between the spin-
trapping agent and the antioxidants present in the extract. All tested strawberry cultivars
demonstrated high ¢OH radical scavenging activities (93-96%).

In Figure 1A, the intensity of the EPR signal of the DEPMPO/OH adduct generated
by an in vitro Fenton reaction was significantly higher in the control when compared
to the strawberry extract, indicating a strong antiradical activity of the latter. Since the
tissue of the strawberry fruit is a very complex system, several factors have a determinant
role in different phenolics scavenging activity, such as the number and configuration
of hydroxyl groups, glycosidic moieties, presence of both 2,3-double bond and a 4-oxo
group, esterification process, etc. [50]. In such a complex medium, the chemistry behind
the antioxidant activities of phenolic compounds is hard to define. Therefore, the spin-
trapping method could provide useful information about the structure-antioxidant activity
of phenolic compounds and their biological relevance in strawberry extracts.

DPPH is a free radical commonly used in EPR studies to measure the ability of plant-
born anthocyanins to eliminate highly reactive species. The antioxidative potential of
strawberry extracts is expressed as a decrease in DPPH radical concentration (Figure 1B).
This is comparatively shown in Table 2, where the higher percentage indicates higher
radical scavenging activity against DPPH. Thus, “Tea’, ‘Premy’, and ‘Joly” were highly
potent cultivars (over 70%), accompanied by ‘Laetitia’ (68.32%), while ‘Alba’, ‘Garda’, and
‘Arianna’ were cultivars with lower antiradical activity (below 50%).

2.3. Peroxidase (POD) Activity

Plants have developed effective protection mechanisms against reactive oxygen
species [14]. The antioxidant defense mechanisms include not only nonenzymic coun-
terparts such as phenolics or ascorbic acid but also the enzymes such as peroxidases.
The physiological role of peroxidase is attributed to phenolics oxidation including lignin
biosynthesis [51]. Given that strawberry fruit is characterized by lignification processes, we
examined specific POD activities in fruits of all tested cultivars (Figure 2A). Their specific
activities were the highest in ‘Garda’, ‘Federica’, and ‘Rumba’ (0.11, 0.08, and 0.06 U mg’1
prot, respectively). The pattern of specific POD activity did not follow that of the total
protein content (Figure 2B). Regardless of very high total protein concentrations, ‘Tea’,
‘Jeny’, and ‘Joly” had low POD values (0.007, 0.01, and 0.03 U mg~! prot, respectively). In
the scarce literature data regarding enzyme activities in strawberry fruits, specific POD
activities were presented in different units (U mg~! FW, nkat g~! FW), so they are not
comparable with our results [25,52]. In addition, naturally occurring low POD activities in
strawberry fruits are further compromised by the extraction procedure and manipulation
during sample preparation; thus, in some studies, purification of the enzyme was carried
out to gain maximal specific POD activities [53], which, therefore, significantly exceed our
values. Specific POD activities in other raw fruit material were found to be higher in some
species, such as raspberry (1-2 U mg~! prot) [54] or significantly lower as in watermelon
(0.003 U mg~! prot) [55].
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Figure 2. Specific activity of peroxidase (POD, U mg‘l prot, (A)) and total protein concentration
(mg ml~1, (B)) in strawberry fruit extracts. Data are presented as means (1 = 3) & standard error (SE).
Bars with different lowercase letters are significantly different (p < 0.05), as determined using the
Duncan comparison test.

2.4. Polyphenols Profiles

One of the most characteristic classes of phenolic compounds that are widely distributed
in the plant kingdom are flavonoids. They are subdivided into different subclasses depending
on which carbon of the C ring the B ring is attached to and the saturation and oxidation status
of the C ring (Figure S1). Flavonoids in which the B ring is in position 3 of the C ring are called
isoflavones, while those in which the B ring is attached in position 2 can be further subdivided
based on of the structural features of the C ring into several subgroups: flavones, flavonols,
flavanones, flavanonols, flavanols or catechins, anthocyanins, and chalcones.

The basic flavonoid structure is aglycone, but they also occur as glycosides, and
glycosidic linkage is usually located at positions 3 or 7 [56]. Occurrence, structure, position,
and a total number of sugar moieties in flavonoids play an important role in the definition
of their antioxidant activity. On the one hand, aglycones are more potent antioxidants than
their corresponding glycosides, but on the other, the increasing degree of polymerization
enhances the antioxidative effectiveness of procyanidins. Thus, procyanidin dimers and
trimers are more effective antioxidants than monomeric flavonoids, while the activity
of tetramers (i.e., oligomers) was found to be about four times higher than that of the
preceding fractions [57].
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Four phenolic compounds subgroups, anthocyanins, flavonols, flavan-3-ols, and hy-
droxycinnamic acids, which are considered as the main secondary metabolites in strawberry,
were separated, identified, and quantified by HPLC in our study (Tables 3-5).

Table 3. Content (ug g~ of FW) of anthocyanins in strawberry fruit extracts.

Pelargonidin-3-O- Pelargonidin-3-O- Pelargonidin-3-O- Pelargonidin-3-O- Cyanidin-3-O-

Cultivars lucoside acetylglucoside rutinoside malonylglucoside lucoside
8 (P-3-G Equiv.) (P-3-G Equiv.) (P-3-G Equiv.) 8
Roxana 26427 + 2164 f,gh 520+ 0.82b 2380 £2.12ab 1.90 £ 0.85 i, o0 é)g5}71
Arosa 230.88 = 36.62d,e,f,g 3.034+0.00 ¢ 20.35 +9.83 ¢, d e f 39.15+0.21cd,e 1.60 + 0.28 h
Joly 492.70 + 12.09 a,b n.d. 17.60 £ 0.28 ¢, d,e 156.58 +3.82 a 2.55 +0.21ef,gh
Asia 487.08 £24.33 a 8.30 £0.66 a 2233 £1.63b,c 210 £0.211, 1454+021h
Alba 21878 + 8.63 h i 0.67+0.14¢ 12.63 + 181 e fgh 39.40 + 127 b,c oot fo;;i
Jeny 81.14 £ 7.57 k n.d. 0.10 £ 0.001 2295+ 021efg 2.65 + 092 e f,gh
i 357.81 &+ 27.65
Laetitia bedef 0.33 £0.06 e 3110 £ 198 a 3750+ 0.21b,cd 3.20 £0.28 d,e f,gh
Garda 191.63 & 14.07 j 0.27 £0.00 e 22.80 £0.14b,c,d 44.80 £3.18b 4.67 £ 0.67 b,c,de f
Lycia 206.35 + 17.23ij 040 £0.07 e 10.69 £ 0.21 e,f,g,h 3890+ 2.76 b,c 542 £1.19b,cdefg
Premy 190.57 £ 8511 n.d. 13.07 + 0.40 e ,f,g,h 12.27 + 049 f,g,h)i,j 5.60 £0.20 b,c
Sibilla 171.44 £ 7.13j 0.27 £0.06 e 11.29 £ 098 ef,g/h/i 12.20 £ 0.14 f,ghi 2.52+0.79 f,g'h
Vivaldi 301.44 £ 10.89 ef,g,h 0.50 £0.07 e 10.83 £ 1.19ef,ghjij 2453 +£0.85d.e,f 495+0.79b,c,de
Rumba 222.20 £ 36.43 h,ijj 0.13 £0.06 e 12.51 £ 0.79 e,f,g,h 34.87 £3.75b,c,d 1.03+0.00 h
Clery 42.00 £6.251 n.d. 3.36 £0.59 k 3.00 + 0.49 h,i,j 6.16 £0.40b
Aprika 182.36 £1.98i n.d. 1512 +291 ¢ def,g 12.37 £ 0.35f,g,hi,j 6.58 £1.78 b
Quicky 433.96 + 891 ab,c 240 £042cd 12.60 £ 2.12 ¢,f,g,h 2040 £ 1.30 e f,g 3.10 £ 0.21 ¢ defgh
Federica 343':3 ;tf3g4.]5 6.10 £0.21b 525 +191jkl 240 +£0.85i, 10.60 £191a
Lofty 30147 £891efgh n.d. 1740 +£1.27 ¢, d,e f 12.20 £ 1.13 f,g,hi,j 120+ 0.21h
Tea 276.97 £ 3.82 gh,i 3.00+042c¢ 19.00 =191 cd,e n.d. 340 & 0.46
b,cd.ef,gh
Mila 334.77 £ 148 defg n.d. 27.40 £0.85ab 11.90 + 0.28 f,g,h,i,j 430+ 046b,c,defg
Arianna 42476 +8.10a,b,c,d 0.70 £ 0.00 e 8.25 4+ 2.12 h,ij k1 15.17 £ 0.67 e f,g/h,i 2.40+0.85gh
Sandra 395.36 £ 7.65Db,c,de n.d. 4.50 £ 0.791i,j,k1 16.96 + 0.42 e,f,g,h 590 +0.42b,c
Albion 257.62 + 54.65 e,f,g,h 0.90 £035e 2320 +7.07 c,d,e f 54.89 +15.70 b 9.50 £0.99 a
Capri 199.03 &£ 5.73 h,i,j 1.80 £ 0.14 ¢, d 12.50 £0.57 d,e,f,gh 720 £1.70 ghjij ss%tfogl;
Irma 202.43 +4.60 h,ij 1.75 £ 0.07 ¢,d 9.75 £ 092 gh,ijk 1.60 0421, 420+£0.28Db,c,de
Data are presented as means (1 = 3) & standard error (SE). Values within a column with different lowercase letters
are significantly different (p < 0.05), as determined using the Duncan comparison test. Labels in parentheses are
analogous with micrograms of corresponding anthocyanin equivalents per gram of fresh weight (FW). P-3-G
equiv., pelargonidin-3-glucoside equivalents; n.d., not detected.
Table 4. Content (ug g~ of FW) of phenolic acids and their derivatives in strawberry fruit extracts.
Ellagic Acid -Coumaroyl Glucose
Cultivars Ellagic Acid Deoxyhexoside p-Coumaric Acid P v
. (CA Equiv)
(EA Equiv.)
Roxana 18.60 £ 0.71 c,def,g 15.18 £ 0.85 ¢,f 1.87 £0.40 hi,j 122.37 £ 11.54 de,f
Arosa 13.90 + 6.08 b,c,de f 21.35+3.04b,c,d 2.87 £0.51fgh 96.23 £9.42f,g
Joly 3340 +4.81b,cd 3423+ 43la 1.55 £ 0.07 i, 18297 £15.77 ¢
Asia 30.60 £ 1.61a,b,c 21.51 £ 0.42b,c,d 427 £040ef 302.17 £ 1.65a
Alba 1333 £ 0.25e,f,g 729+ 0.26gh 425 +021ef 135.35 + 3.06 ¢,d,e
Jeny 18.15 +2.33b,c,d,e f 16.95 £ 0.14 d,e 410+ 0.71ef 112.54 4+ 20.72 e f
Laetitia 3095+ 6.72a 23.58 £0.92b 3.80+0.71fg 252.72 £28.25b
Garda 790 £0.44 gh 939+042¢g 2.05 4 0.21 h,ij 164.49 £3.77 ¢
Lycia 13.73 £ 0.00 c,d,e f,g 1713 £ 049 c,d,e 3.53 £ 0.64 f,gh 135.35 + 14.83 c,d,e
Premy 10.58 £ 0.59 f,g 6.86 == 1.55 g,h 6.57 093 c,d,e 67.59 + 0.28 h,ij
Sibilla 10.61 £ 0.72f,g 340+£095h 6.17 +0.67 d,e 65.94 £ 191 hjij
Vivaldi 12.63 £ 059 e/f,g 2.83£0.55h 11.37 £ 0.78 a 111.72 £2.83 e,f
Rumba 14.48 £ 153 e f,g 296 £0.81h 11.37+£120a 63.33 £3.69 hjij
Clery 3123 £3.14ab 320£0.52h 1.20 +0.14j 75.03 £3.32ghi
Aprika 1195+ 1.18 ef,g 6.76 £1.34 gh 6.60 £ 0.07 ¢, de 65.94 £2.76 hij
Quicky 14.45 +0.78 c,d,e f,g 3.00£0.80h 853 £0.35b 55.79 £ 6.79jk
Federica 555 £ 0.64 h 170+ 0.61h 750 £0.71 ¢, d 35.76 £4.211
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Table 4. Cont.

Ellagic Acid -Coumaroyl Glucose
Cultivars Ellagic Acid Deoxyhexoside p-Coumaric Acid p--ou yo o
. (CA Equiv.)
(EA Equiv.)
Lofty 2110+ 212 def,g 213+ 025h 5.83 +0.23d,e 41.96 +2.80 k1
Tea 1155 £ 0.07 e f,g 127 +£0.15h 5734+ 0.40d,e 86.79 £ 1.41 gh
Mila 9.60+1.48¢g 1.83 £ 0.06 h 6.43 +£0.21 ¢, de 73.04 £134ghji
Arianna 990 £ 049 f,g 213+ 0.29h 8.73+0.38b 74.34 +1.06 g,h,i
Sandra 1470 £2.12efg 1.73 £ 0.06 h 8.10 £ 0.14 b,c 61.34 +£0.92i,j,k
Albion 18.15 £ 0.07 ¢, def,g 1072 £0.21£g 123 £0.29j 73.92 £10.36 gh,i
Capri 22.80 +3.11b,cd,e 22.84 +0.07 b,c 6.00 +0.85d,e 171.48 £ 11.30 ¢
Irma 9.55+2.76f,g 9.66 +1.06 g 2.93 +0.06 f,g,h 220.92 +20.48 b
Data are presented as means (1 = 3) & standard error (SE). Values within a column with different lowercase letters
are significantly different (p < 0.05), as determined using the Duncan comparison test. Labels in parentheses are
analogous with micrograms of corresponding anthocyanin equivalents per gram of fresh weight (FW). EA equiv.,
ellagic acid equivalents; CA equiv., p-coumaric acid equivalents.
Table 5. Content (ug g~ of FW) of flavonols and flavan-3-ols in strawberry fruit extracts.
Quercetin-3- Kaempferol-3- Kaempferol-3- Kaempferol-3- Kaempferol-3-
Cultivars Catechin glucuronide acetylglucoside glucoside glucuronide coumaroyglucoside
(Querc Equiv.) (Kaempf Equiv.) (Kaempf Equiv.) (Kaempf Equiv.) (Kaempf Equiv.)
Roxana 43'(5:16:; 2'82 5954 0.211j 1.15 £ 0.07 f,g 6.34 +0.56 1 3324+ 020 h 20.83 +4.42 ¢ f
Arosa 35.69 + 3.85 g,hij 1530 £3.68¢g 120 £0.17f,g 594 + 1561 18.26 £1.93 f 10.61 £0.28 gh
Joly 7592 +1.62 a 11.60 + 1.31 h,i 1.80 £ 0.14 e,f 42.08 £ 0.25¢,f 77.97 £ 498 ¢ 30.56 +1.32d
Asia 76.73 +3.78 a 8.77 £ 0.47 hi 1.67 £ 1.07 e f 16.09 + 0.49 h,i 3.66 + 0.40 h,i 933 +£0.23h
Alba 5227 +6.35¢,d 11.05 £ 1.06 h 1.40 £0.30f,g 13.14 £0.101i, 9.59+0.09¢g 1451 +£270¢g
Jeny 22.10 £ 0.84j 40.25+1.77d 125+ 0.07 f,g 20.50 £+ 3.27 g,h 1453 £0.71f,g 21.48 + 6.61 ¢f
Laetitia 66.56 +2.96 b 23.50 +1.98 f 1.57 £ 0.15¢,f 2858 +0.13g 15.83 £ 0.83f,g 20.97 +5.65 ¢f
Garda 2744 £1.341] 1195+ 148 h 1.80 £ 042 e, f 395+0.211 822 +£0.62 gh 9.76 +2.23h
Lycia 30.92 + 1.59 h,i,j k 19.81 £ 237 f,g 0.94 4 0.07 g,h 19.76 £2.85gh 776 £ 056 g 48.03 +2.39¢
Premy 29.77 £ 0.76 h,i,j 1949 £296 g 244 +0.28 e 16.23 + 2.88 h,i 73.05 £ 0.95 ¢ 3.22+0.221
Sibilla 27.31 £ 1.53i, 20.39 £ 1.80f,g 146 £049f,g 17.86 +£ 0.21 h,i 44.00 +2.88 ¢ 349 +0.201
Vivaldi 50.72 + 1.83 ¢, d 6.124+2.041j 1.36 £0.12f,g 1922 £ 0.76 gh 67.81 +3.01cd 392+ 0.651
Rumba 36.60 £ 4.37 g hijj 8.02+1.02h 0.80 = 0.11 h 51.30 = 5.25¢ 72.56 +3.76 ¢ 441 +0.221
Clery 6.95 +0.22 k 2.59 £ 0.49j 170 £ 040 efg 4751 +1.52¢ef 48.28 +2.10d,e 342 +0.241
Aprika 2898 £0.441} 1590 £ 0.54 h 0.94 4 0.08 g,h 12.95 +1.16i,j 64.78 +2.02 ¢ 412+ 0.651
Quicky 54.89 + 3.96 ¢ 19.33 £ 0.84f,g 16.86 £5.21b 77.86 +0.39 ¢,d 20.05 +3.37 f 3294 4+9.10d
Federica 43‘3c)13eif ;'24 31.36 = 5.51 e 1540 £2.13b 80.12 +17.55b,c 3714 +0.10 e 99.31 +£7.37b
Lofty 37.60 £0.44 ghjij 73.74 + 0.64 b 20.38 = 1.52a 48.09 + 1.61 ¢f 60.16 + 4.66 ¢,d 27.10+9.34d,e
Tea 48.11 + 151 ¢cd.e 76.29 +0.28 a 13.86 £ 2.16 b,c 63.36 + 16.45d,e 81.31 +3.13 ¢ 98.94 +17.75b
Mila 39.?1;}:1 11'07 50.73 4+ 4.60 ¢ 10.29 +£2.01 ¢, d 127.09 +27.73 a 29450 +5.39 a 108.57 + 51.59 a
Arianna 51.89 +0.31 ¢, d 29.66 + 0.07 e f 6.15+0.27d 83.58 +2.48 b,c 100.09 + 14.54 b 26.34 +12.21d,e
Sandra 31.33 £ 127 hjijk 34.00 +1.06 e 7.92 +0.50 d 79.56 + 37.99 b,c 9.07+147¢g 41.26 +13.03 ¢
Albion 32.73 £ 5.85h,i,j 18.90 £ 0.92 f,g 1.35 £ 0.07 f,g 20.18 £1.94 gh 14.07 £ 346 f,g 30.05 +6.22d
Capri 41%”0};‘:}%41 33.50 + 0.42 ¢ f 6.44 +3.04 d 51.58 +0.47 e 1.62 £ 043 11.88 £2.37 gh
Irma 3728 £1.17 g hjij 11.95 £+ 0.78 h,i 1.65 £ 0.07 e f 11.14 £ 0.58j 536 +£0.29 h 37.65 +5.09 ¢, d

Data are presented as means (1 = 3) & standard error (SE). Values within a column with different lowercase letters
are significantly different (p < 0.05), as determined using the Duncan comparison test. Labels in parentheses are
analogous with micrograms of corresponding phenolic equivalents per gram of fresh weight (FW). Querc equiv.,
quercetin equivalents; Kaempf equiv., kaempferol equivalents.

The glycosylation pattern of tested cultivars showed that 92.23% of anthocyanins
were presented as basic glycosides, while 7.77% appeared in acylated form (Table S1). A
different pattern, with 44.94% of glycosides and 55.06% of acylated form, was perceived in
derivatives of phenolics, while only 11.69% of quantified phenolic compounds were in a
nonderivate, free form.

Acquired flavonoid glycosides profiles of all tested cultivars indicated various sugar
moieties: glucosides, acetylglucosides, rutinosides, malonylglucosides, glucuronides, and
coumaroylglucoside. In total, 87.79% of anthocyanins were presented as glucosides, 7.34%
as malonylglucosides, 4.44% as rutinosides, and only 0.43% as acetylglucosides. In deriva-
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tives of phenolics, the glycosylation pattern was different, where 53.50% of them occurred
as coumaroylglucoside, 26.08% as glucuronides, 15.14% as glucosides, 3.71% as deoxyhexo-
side, and 1.56% as acetylglucosides.

Among five detected anthocyanin compounds, pelargonidin-3-O-glucoside (P-3-G) was
predominant in all cultivars, making up almost 90% of the total anthocyanin content. The
highest values were detected in ‘Joly’, “Asia’, ‘Quicky’, and ‘Arianna’ (492.70, 487.08, 433.96,
and 424.76 ug g~ of FW, respectively). Similarly, in the study of Crecente-Campo et al. [58],
P-3-G was the major anthocyanin contributor with the amount of 250-350 pug g~ ! of FW,
representing 91.5% of the total anthocyanins detected in strawberry fruit.
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Figure 3. Visualization of the capacity of fresh fruit tissue to reduce spin-probe 3-carbamoyl proxyl

(3CP). Two-dimensional EPR image of the Y-Z section.

Pelargonidin-3-O-malonylglucoside was the second most abundant anthocyanin in
all cultivars, with an extremely high concentration in ‘Joly’ (156.58 ug eq P-3-G g~ ! FW),
while its concentration in all remaining cultivars was in the range from 1.60 to 54.89 ug
eq P-3-G g~! FW. Since the acylation of pelargonidin occurs mainly in achenes [59], it
inspired us to investigate tissue distribution of the antioxidative potential of anthocyanins
in fruit by 2D EPR imaging [60]. According to the color scale given in Figure 3, where red
represents the lower and blue the higher spin-probe reduction values, the obtained gradient
of free radicals along the fresh fruit cross-section confirmed that anthocyanins along with
other antioxidants are mainly present at the fruit surface. Pelargonidin-3-O-rutinoside
(P-3-R) and cyanidin-3-O-glucoside (C-3-G) have also been detected in strawberries with
concentration ranges from 0.10 to 31.10 ug eq P-3-G g~! FW and 1.03 to 9.50 pug g~ FW,
respectively, and their maximal values were recorded in ‘Laetitia” and “Albion’ in the order
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already mentioned. Similar levels of P-3-R (13-55 g g’1 FW) and C-3-G (9.8 ug g’1 FW)
were reported for conventionally cultivated strawberries [58].

Flavonols are the most common and largest subgroup of flavonoids in fruits. They have
a hydroxyl group in position 3 of the C ring (Figure S1), which may also be glycosylated.
Derivatives of quercetin and kaempferol are the most abundant flavonols in strawberry,
which was the case in our cultivars as well. A total of five flavonols were detected, of which
only one compound was derived from quercetin and four from kaempferol (Table 5). Like
the observations already reported [6], similar content of quercetin and myricetin was also
detected in tested cultivars. Quercetin-3-glucuronide was dominant in “Tea” and “Lofty’
(76.29 and 73.74 ug eq Querc g~ ! FW), while in ‘Clery’ the lowest content was detected
(2.59 pg eq Querc g’1 FW). In kaempferol compounds, different sugar moieties were rep-
resented: acetylglucosides, glucosides, glucuronides, and coumaroylglucosides. Cultivar
‘Lofty” was predominant concerning kaempferol-3-acetylglucoside (20.38 ug eq Kaempf g~
FW), followed by ‘Federica’, ‘Quicky’, “Tea’, and ‘Mila’ (15.40, 16.86, 13.86, and 10.29 ug eq
Kaempf gf1 FW, respectively), while the remaining cultivars exhibited significantly lower
values. Compared to other cultivars, ‘Mila” was super-dominant in terms of kaempferol-
3-glucoside, kaempferol-3-glucuronide, and kaempferol-3-coumaroylglucoside (127.09,
294.50, and 108.57 ug eq Kaempf g~! FW, respectively), followed by ‘Arianna’ (83.58,
100.09, and 26.34 pg eq Kaempf g~! FW, respectively) and ‘Tea’ (63.36, 81.31, and 98.94 pg
eq Kaempf g~! FW, respectively). The average mean values of most cultivars are in line
with previously published content of kaempferol-3-glucoside (10-70 ug g~! FW) and
kaempferol-3-coumaroylglucoside (1040 pug g~! FW) in eastern strawberry [6].

Flavan-3-ols, represented by catechins, are compounds in which the hydroxyl group is
always bound to position 3 of the C ring (Figure S1). Catechins seem to be the most powerful
flavonoids for protection against reactive oxygen species radicals [14], also having good
antibacterial, antiviral, and antifungal activity. Constitutive concentrations of catechins are
changing during fruit development, being the highest in young (green) fruits to restrict
fungal growth in this sensitive phase, thus assuming that flavanols’ biosynthesis is highly
active in this developmental stage. A decrease in catechin concentration in the late ripening
stage corresponds to a weak activity of the flavanol pathway in this stage [61].

In our study (Table 5), the highest contents of catechin were detected in ‘Asia” and ‘Joly
(76.73 and 75.92 ug g~ ! FW), along with ‘Laetitia’ (66.56 ng g~! FW). However, the HPLC
profile of the most tested cultivars demonstrated lower values corresponding to those of
44.7 pg g~ ! of the fresh edible weight of strawberry fruit reported in the literature [62].

Hydroxycinnamic acid derivatives are an important class of polyphenolic compounds
originating from the Mevalonate-Shikimate biosynthesis pathways in plants, also serving
as precursor molecules for flavonoids and anthocyanins [63]. A simple phenolic com-
pound, such as p-coumaric acid, belongs to this important phenolic acid group. Previously,
p-coumaric acid was identified as the major hydroxycinnamic acid in the ripe stage of
four strawberry cultivars in the concentration range of 4.2-20.7 ug g~! FW [64]. In our
study, detected concentrations of p-coumaric acid were the highest in ‘Vivaldi’ and ‘Rumba’
cultivars with values of 11.37 ug g~! FW, while in the remaining cultivars the concentra-
tions were significantly lower (Table 4), which implies the possibility of the mild pre-fully
ripe stage of our fruit. Coumaroyl glucose is an important derivative present in substan-
tial quantities in strawberry fruit but with significant variation between tested cultivars.
The highest values were found in ‘Asia’ (302.17 ug eq CA g~! FW), followed by ‘Laetitia’
(252.72 pg eq CA g’1 FW), while almost 10 times smaller quantities were detected in ‘Fed-
erica’ (35.76 pg eq CA g~ ! FW). Since the different hydroxycinnamic acids can be present
in various derivatives among different cultivars [3], such discrepancy in content can be
expected, when the apparent form (even being the dominant one) is selected.

Ellagic acid is a lactone-type, water-soluble phenolic compound mostly present in
plant cell vacuoles in free and many various covalently bound forms [65]. The bound
form predominates in most plants, but the free form is released during hydrolysis, which
occurs in the human gastrointestinal tract under physiological conditions, thus enabling the

’
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utilization of plant-based ellagic acid to exert beneficial effects on human health [66]. The
free form of ellagic acid and its derivative were detected in our cultivars in the concentration
range of 1.27-34.23 pg ¢~ ! FW, while the highest concentrations of both ellagic acid and
ellagic acid deoxyhexoside were detected in ‘Laetitia’ (30.95 ug g’l FW) and ‘Joly” (34.23 pg
eq EA g~! FW), respectively (Table 4). The concentration of ellagic acid in fully ripe fruits
of Turkish strawberry cultivars was found to be between 1.1 and 5.2 ug g~! FW [64].
Since the decrease in the ellagic acid content between the green and fully ripe stages of
strawberry fruit ranged from 2.8 to 8.5 times [65], its higher concentration in some of the
tested cultivars confirms the possible mild pre-fully ripe stage of the fruit. The level of
ellagic acid in strawberry fruits generally differs among cultivars, which is not only an
effect of extraction and quantification methods but also the influence of growing conditions
and practices.

From presented data, it is obvious that the majority of new cultivars are rich in bioac-
tive phenolic compounds. Additional evaluation was to point out the most important group
of analyzed compounds that stood out as a major contributor to antioxidant properties. As
expected, the answer was not straightforward; the correlation of the sum of the compounds
presented in each Table (Tables 3-5) with the estimated DPPH radical quenching ability
of the apparent cultivar (Table 2) showed different patterns. After the analysis of ‘Alba’,
‘Garda’, ‘Joly’, and “Tea’ cultivars standing at the high/low margins of DPPH quenching
activity, the highest correlation coefficient (r* = 0.9413) was estimated for the sum of the
flavonoids presented in Table 5, while considerably lower coefficients were calculated for
the sum of anthocyanins (r?> = 0.2115) and phenolic acids (r> = 0.0138). Thus, flavonoids
seemed to be the major antioxidant foundation of strawberry fruit. However, when all
of the analyzed cultivars were taken in to the account, no support for such a correlation
was found among sums of all tested groups of phenolic compounds and DPPH quenching
capacity. The right answer stands in the synergistic interaction of different amounts of
different antioxidants present in each cultivar defining overall antioxidative potential. The
aforementioned conclusion about the complexity of antioxidant interplay inside the fruit
can never be grasped without comprehensive research of a number of various cultivars
such as that which we presented.

3. Materials and Methods
3.1. Plant Materials

A total of 25 newly introduced strawberry cultivars, of which 22 are June-bearing
cultivars (“Clery’, ‘Alba’, ‘Joly’, ‘Aprika’, ‘Asia’, “Arosa’, ‘Roxana’, ‘Jeny’, ‘Laetitia’, ‘Garda’,
‘Lycia’, ‘Premy’, ‘Sibilla’, ‘Quicky’, ‘Federica’, ‘Lofty’, “Tea’, ‘Mila’, ‘Arianna’, ‘Sandra’,
‘Vivaldi’, and ‘Rumba) and 3 are ever-bearing types (“Albion’, ‘Capri’, and ‘Irma *), were
used in our experiment. All cultivars were grown in a plantation in Serbia located in the
municipality of Sid (45°07’ N, 19°13' E, 113 m a.s.l.). This region is characterized by a
temperate continental climate, with a mean annual air temperature of 10.7 °C and a mean
annual precipitation of 650 mm. The soil, a fine sandy loam, had a pH of 6.8 and medium to
high levels of all nutrients. Cold-stored plants of tested strawberry cultivars were planted
on raised double beds covered with black polyethylene foil in July 2020. Plant spacing was
30 cm x 30 cm. Drip irrigation with two laterals per raised bed and emitters at a 10 cm
distance were applied. Fertigation was performed at a frequency in accordance with crop
requirements previously reported by Tomi¢ et al. [67].

Fully ripe fruit samples were collected in three repetitions per 20 fruits (60 fruits per
cultivar) during the second harvest in the first year after planting (2021). Following the
harvest, fruits were stored for a short time at —20 °C until chemical analysis to minimize
the effect of postharvest factors.

3.2. Sample Preparation

Before chemical analysis, the whole fruits were carefully thawed, measured for exact
weight, and homogenized using mortar and pestle. Phenolic compounds were extracted in
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80% methanol at a ratio of 1:3 (w/v), while extraction of anthocyanins was performed in an
extraction solution containing methanol/water/hydrochloric acid at a ratio of 70:30:5 by
volume. After centrifugation at 13,000 x g for 10 min at 4 °C, supernatants were used for
further analyses.

Extracts for enzyme activity determination were prepared as follows: 1 g of homoge-
nized fruit tissue were extracted in 2 mL 0.05 M sodium—phosphate buffer pH 7, contain-
ing 4% (w/v) polyvinylpyrrolidone (PVP) and 0.1% Triton X 100. After centrifugation at
13,000x g for 10 min at 4 °C, supernatants were used for spectrophotometric determination
of peroxidase activities. Three extracts were prepared for each sample analyzed.

3.3. Spectrophotometric Measurements

Spectrophotometric determination of total phenolic content (TPC), total anthocyanin
content (TACY), and protein concentration was performed on a Multiskan® Spectrum
UV /Vis spectrophotometer (Thermo Electron Corporation, Vantaa, Finland).

Determination of TPC in extracts was carried out with the use of the Folin—Ciocalteu
spectrophotometric procedure using gallic acid (GA) as a standard for the calibration curve
(0—340 pug of GA ml~1) [68]. Prepared standards and samples were mixed with 0.25 N
Folin—Ciocalteu reagent and incubated for 3 min at 22 °C. Afterward, a 0.2 M sodium
carbonate solution was added and incubated for 60 min at 22 °C. Absorbance was measured
at 724 nm, and results were expressed as milligrams of gallic acid equivalent per gram of
fresh weight (mg of GA equiv g_1 FW).

A modified pH differential absorbance method was used to determine TACY [69]. For the
analysis, two buffers were used: 0.025 M potassium chloride buffer at pH 1.0 and 0.4 M sodium
acetate buffer at pH 4.5. The absorbance of strawberry extracts was read at 510 and 700 nm.
Results were expressed as milligrams of pelargonidin-3-O-glucoside (¢ = 17,330 I mol~! cm™1)
equivalents per 100 g of fresh weight (mg of P-3-G equiv 100 g~ FW).

The Bradford method was used for the determination of protein concentration in
samples after reading the absorbance at 595 nm, with bovine serum albumin (BSA) as a
standard [70].

Spectrophotometric determination of peroxidases (POD) activity was performed on a
Shimadzu spectrophotometer (UV-2501 PC 21, Kyoto, Japan). POD activity was measured
by monitoring the formation of tetraguaiacol (e = 25.5 mM~! em 1) from guaiacol at 470 nm
in the presence of HyO, [71]. The reaction mixture consisted of 0.25% (v/v) guaiacol in
0.05 M sodium phosphate buffer pH 6.0 and 0.01 M H,O,. The total POD activity was
divided by the protein concentration (in mg ml~!), and specific activity values were quoted
as units per mg of proteins (U mg ! prot).

3.4. Vitamin C

Vitamin C was quantified with the reflectometer set (Merck RQflex, Merck KGaA,
Germany) as formerly described by Pantelidis et al. [72]. Results were expressed as mg
ascorbic acid per 100 g of fresh weight (mg 100 g~! FW).

3.5. HPLC Analysis

Analysis of individual phenolic compounds was performed by a reversed-phase
HPLC-MS system consisted of 1525 binary pumps, thermostat, and 717+ autosampler
connected to the Waters 2996 diode array and EMD 1000 Single quadrupole detector with
ESI probe (Waters, Milford, MA, USA). Symmetry C-18 RP column (150 mm X 4.6 mm)
packed with 5 um particle diameter (Waters, Milford, MA, USA) connected to an appro-
priate guard column was used for separation. Binary gradient of mobile phases A (0.1%
formic acid) and B (acetonitrile) were used at a flow of 1 ml per min, with the following
gradient profile: in the first 20 min from 10 to 20% B; next 10 min of linear rise up to 40% B,
followed by 15 min reverse to initial 10% B and additional 5 min of equilibration time.
A postcolumn flow splitter (ASI, Richmond, CA, USA) with a 5/1 split ratio was used
to obtain the optimal mobile phase inflow for the ESI probe. A DAD detector was set
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at 254, 315, and 510 nm for the detection of various classes of phenolic metabolites. For
LC-MS analysis of anthocyanins, the positive ESI scan mode was used with the following
parameters: capillary voltage 3.5 kV, cone voltage +35 V, and extractor and radio frequency
(RF) lens voltages were 3.0 and 0.2 V, respectively. The negative ESI scan mode was used
for other phenolic compounds with all parameters similar except for capillary and cone
voltage: 3 kV and —30 V, respectively. When necessary for the quantification of metabolites,
chromatograms were recorded in SIR mode. Source and desolvation temperatures were
120 °C and 360 °C respectively, with an N, gas flow of 500 1\ h. The data acquisition and
spectral evaluation for peak confirmation were carried out by Waters Empower 2 Software
(Waters, Milford, MA, USA).

3.6. Electron Paramagnetic Resonance (EPR) Spectroscopy

To investigate the hydroxyl radicals (¢OH) scavenging activity of strawberry extracts,
EPR spectroscopy, in combination with the spin-trapping technique, was used following
the procedure previously described [47,73]. In brief, the ¢OH-generating Fenton system
consisted of 29 uL of the sample, which contained 25 pL of deionized water, 1 pL of
strawberry extract (diluted 10 times), 2 pL of HyO, (final concentration 0.35 mM), and 1 puL
of spin trap DEPMPO (final concentration 3.5 mM). To initiate the reaction, 1 uL of FeSO4
(final concentration 0.15 mM) was added to the reaction solution that was immediately
transferred into the gas-permeable Teflon tube and placed inside the resonator cavity.
Recordings were made using the following experimental settings: center field 3500 G,
microwave power 10 mW, microwave frequency 9.85 GHz, modulation frequency 100 kHz,
modulation amplitude 1 G.

The same settings were used for recording EPR spectra of DPPH free radical degrada-
tion kinetics. The interaction of freshly prepared DPPH solution with strawberry-derived
antioxidant compounds was studied by measuring the intensity of the DPPH EPR signal.
Then, 28 puL of MeOH was mixed with 1 puL of 3.2 mM DPPH, and 1 pL of the strawberry
extract was added before transferring the mixture into a 1 mm diameter Teflon tube and
recording the EPR spectra [74]. In both experiments, solvent and sample blanks were
provided for each assay to acquire control records.

For the 2D EPR imaging, strawberry fruit was incubated in the redox-sensitive,
membrane-permeable aminoxyl spin-probe (10 mM 3-carbamoyl proxyl, 3CP), as described
in Dragisi¢ Maksimovi¢ et al. [60]. After 20 min of incubation, the whole fruit was placed
inside the resonator cavity to visualize the in vivo arrangement of aminoxyl spin-probes
in different fruit tissues. Endogenous ROS react with the nitroxide, reducing it to the
EPR-silent hydroxylamine, thus diminishing the EPR signal. The spin-probe reduction
rate is the measure of the redox status of the tissue. Signal intensity was color-coded in
arbitrary EPRI units as specified by the color bar: yellow to red corresponds to high EPRI
signal intensity, while green to blue indicates low to no EPRI signal intensity.

To perform L-band 2D EPR imaging measurements, the whole fruit was inserted
into an ER540R36 resonator and measured using the following parameters: gradient
strength 15 G cm™!, microwave power 10 mW, modulation frequency 30 kHz, modula-
tion amplitude 1 G.

3.7. Statistical Analysis

Statistical analysis was performed using SPSS (IBM, Armonk, NY, USA). To examine
significant differences in mean values of analyzed parameters between strawberry cultivars,
analysis of variance (ANOVA) was used, while the Duncan test provided post hoc analysis.
The level of statistical significance was set at 0.05.

4. Conclusions

In addition to yield, fruit chemical composition becomes very important as selection
criteria toward health-promoting characteristics that can attribute to marketing prevalence
as well as a consumer health benefit. This comparative study revealed that various straw-
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berry cultivars differ in their phenolic profiles, so it is very important to select cultivars
that are the most suitable for both commercial production and human health.

Regardless of a large number of cultivars and monitored parameters that were in-
cluded in this study, several cultivars stood out in terms of the phenolic profile together
with other bioactive components: ‘Laetitia’, ‘Joly’, “Arianna’, “Tea’, and ‘Mila ". Intercultivar
variations in phenolic profiles among them should be considered in breeding programs
aimed at selecting promising cultivars with improved antioxidant capacity and nutraceuti-
cal properties. Increasing awareness of healthy nutrition in modern life places scientific
studies of phytochemicals and their disease-preventing properties at the forefront, which
is accompanied by higher consumer demands for ‘super fruits’. It opens up a new ap-
proach to personalized nutrition in relation to phenolic compounds naturally occurring in
strawberries.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/plants11243566/s1. Table S1: The glycosylation pattern (%) of
phenolic compounds in strawberry fruit extracts. Figure S1: Basic structure of flavonoids.
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