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M.; Benka, P.; Stričević, R. Correlation

between Ground Measurements and

UAV Sensed Vegetation Indices for

Yield Prediction of Common Bean

Grown under Different Irrigation

Treatments and Sowing Periods.

Water 2022, 14, 3786. https://

doi.org/10.3390/w14223786

Academic Editor: Guido D’Urso

Received: 7 October 2022

Accepted: 18 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Correlation between Ground Measurements and UAV Sensed
Vegetation Indices for Yield Prediction of Common Bean Grown
under Different Irrigation Treatments and Sowing Periods
Aleksa Lipovac 1,* , Atila Bezdan 2 , Djordje Moravčević 1, Nevenka Djurović 1, Marija Ćosić 1, Pavel Benka 2

and Ružica Stričević 1
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Abstract: The objective of this study is to assess the possibility of using unmanned aerial vehicle
(UAV) multispectral imagery for rapid monitoring, water stress detection and yield prediction under
different sowing periods and irrigation treatments of common bean (Phaseolus vulgaris, L). The study
used a two-factorial split-plot design, divided into subplots. There were three sowing periods (plots;
I—mid April, II—end of May/beginning of June, III—third decade of June/beginning of July) and
three levels of irrigation (subplots; full irrigation (F)—providing 100% of crop evapotranspiration
(ETc), deficit irrigation (R)—providing 80% of ETc, and deficit irrigation (S) providing—60% of ETc).
Canopy cover (CC), leaf area index (LAI), transpiration (T) and soil moisture (Sm) were monitored
in all treatments during the growth period. A multispectral camera was mounted on a drone on
seven occasions during two years of research which provided raw multispectral images. The NDVI
(Normalized Difference Vegetation Index), MCARI1 (Modified Chlorophyll Absorption in Reflectance
Index), NDRE (Normalized Difference Red Edge), GNDVI (Green Normalized Difference Vegetation
Index) and Optimized Soil Adjusted Vegetation Index (OSAVI) were computed from the images.
The results indicated that NDVI, MCARI1 and GNDVI derived from the UAV are sensitive to water
stress in S treatments, while mild water stress among the R treatments could not be detected. The
NDVI and MCARI1 of the II-S treatment predicted yields better (r2 = 0.65, y = 4.01 tha−1; r2 = 0.70,
y = 4.28 tha−1) than of III-S (r2 = 0.012, y = 3.54 tha−1; r2 = 0.020, y = 3.7 tha−1). The use of NDVI and
MCARI will be able to predict common bean yields under deficit irrigation conditions. However,
remote sensing methods did not reveal pest invasion, so good yield predictions require observations
in the field. Generally, a low-flying UAV proved to be useful for monitoring crop status and predicting
yield and water stress in different irrigation regimes and sowing period.

Keywords: common bean; irrigation; late sowing; remote sensing; vegetation indices; yield prediction

1. Introduction

One of the major challenges in the 21st century will be to enhance agriculture despite
climate change, in order to meet the increasing food demand due to population growth. Air
temperature increase, redistribution and varying intensity of rainfall, drought, and water
scarcity are the most severe threats to crop farming [1–3], indicating that the agricultural
sector will be the most threatened by climate change.

In that regard, various improvements and innovations in agriculture sector (irrigation
strategies and techniques [4–11]; fertilization [12–14] or field management practices [15–18],
etc.) have already enhanced farming technologies, increased yields, and expanded the
scope of farming while preserving soil and water. However, the principles of precision
agriculture are being followed more widely to improve crop productivity and the use of
natural resources.
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Timely decisions and agrotechnical measures are increasingly based on information
that characterizes the plot of land and the crop, derived from in situ observations and
laboratory analyses. The monitoring of crop status with regard to water availability,
nutrient supply, and health is conducted using ground-based devices, such as leaf area
index sensors [19], thermal cameras [20,21] leaf water potential chambers [22–24] and the
like. These methods are accurate but time consuming in the field and unsuitable for large
areas because they cannot provide an overall picture.

As such, a lot of research is focused on the potential of remote sensing for monitoring
the status of crops over space and time. The various specific applications of remote
sensing are (e.g., yield prediction, water status and irrigation, weed detection, fertilization,
precision farming etc.) on the primary platforms (e.g., unmanned aerial vehicles—UAV,
satellite, and sensors) [25–27]. Irrigation management using satellites was developed
and widely researched [28–30]. Remote sensing by means of a small unmanned aerial
vehicle (UAV) with high spatial resolution is increasingly used to precisely assess the crop
water status [31], yield [32], biomass [33], leaf area index (LAI) [34], and stress [35]. To
date, the deployment of UAVs for irrigation practices has been studied extensively but
can still be improved [36]. Mwinuka et al. [31] used multispectral and thermal images
to determine irrigated plant water conditions and predict yields of the African eggplant.
They emphasized the Normalized Difference Vegetation Index (NDVI) and Optimized
Soil Adjusted Vegetation Index (OSAVI) for water stress detection and yield prediction.
Kirnak and Hasan [24] reported strong correlations between LAI, leaf water potential
(LWP), and seed yield (SY) with nine different spectral vegetation indices on drip irrigated
pumpkin, indicating that VI could be useful for yield estimation and irrigation scheduling.
Nemesekeri et al. [37] proved that NDVI measured during flowering and pod development
correlates closely with yields of snap bean. Vegetation indices (NDVI, Green Normalized
Difference Vegetation Index (GNDVI), and Blue Normalized Difference Vegetation Index
(BNDVI)) acquired from UAV could detect the water stress of turf grass before it occurs,
suggesting that weekly measurements with UAV could benefit irrigation management [38].
Irrigation management using NDVI proved to be effective under variable-rate irrigation
systems [39].

There are only a few studies related to the usage of the UAVs for irrigation management
and yields estimation of bean cultivars (Phaseolus vulgaris). Zhou et al. [40] proposed
GNDVI and canopy cover from multispectral sensored data as crop water stress and seed
yield indicators of pinto beans. Koksal et al. [41] conducted a study on common bean
grown in a subhumid climate in an optimal sowing period and determined that spectral
reflectance values were influenced by different irrigation regimes and vegetation conditions.
They indicated that these variations offered significant possibilities for the use of remote
sensing in the estimation of ETa (actual evapotranspiration). Common bean biomass and
GNDVI strongly correlated and could be used for the monitoring of common bean drought
stress [42].

Additionally, Rai et al. [43] and Ranjan et al. [44] evaluated the role of ground-based
vegetation indices (VIs) for irrigated pinto bean stress and yield assessments.

Remote sensing based on UAVs, along with farming technologies with different irriga-
tion treatments and sowing periods, suggests significant potential for improving agriculture
on a farmer scale from the viewpoints of optimal yield, maximized soil utilization, and
water conservation. Vegetation indices can help farmers make accurate decisions about
proper crop management, as well as in detecting crop stress response and predicting yield.
The production of beans in Serbia is declining and is characterized by low and variable
yields (roughly 1 tha−1) [45], which leads to increasing imports and high prices of beans in
the market.

Therefore, our research objective was to evaluate the ability of the early detection
of water stress of the common bean (Phaseolus vulgaris L.) with three different irrigation
regimes from well-watered to severe deficit irrigation using UAV in three different sowing
periods (from mid-April to the beginning of July). Another objective was to analyze
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the correlation between canopy cover (CC), leaf area index (LAI), transpiration (T), soil
moisture (Sm) and vegetation indices (VI) obtained with UAV in different irrigation regimes
and different sowing periods. Specifically, our goal was to determine whether UAV could
be used for rapid yield prediction under different water supply conditions of the common
bean (Phaseolus vulgaris, L) grown in different periods of the year.

2. Materials and Methods
2.1. Study Area

The experiment was conducted in 2019 and 2020 in an open field of the farm Napredak
AD, belonging to the company Delta Agrar. The study area is located near the town of Stara
Pazova, some 40 km north of Belgrade, Serbia (latitude 44◦58′50.29′′; longitude 20◦7′45.16′′;
79 m above sea level), in southeast Europe (Figure 1). The climate in the area is moderate
continental. The average annual air temperature is 12.4 ◦C, the warmest months are July
and August (avg. 22.9 ◦C), and the coldest months are December and January (avg. 1.1 ◦C).
The average humidity is 74.3%, and the range is from 86.3% (high) to 65.6% and 65.2%
(low), corresponding the lowest and highest average air temperatures, respectively. The
average wind speed at 2 m is 1.8 ms−1 and the windiest month is March (2.2 ms−1). The
annual average precipitation is 620 mm, varying from 937.3 mm to 351.6 mm. The wettest
month is June (79.7 mm) and the driest is February (33.2 mm). According to the official soil
classification system of Serbia, the soil in the study area is Chernozem with an A-AC-CA-C
profile [46]. Based on the US classification [47], the soil in horizon A (0–55 cm) is silt loam,
in horizons AC (55–90 cm) and CA (90–115 cm) it is silt clay loam, and in horizon C it is
silty loam. The soil air-water characteristics are favorable along the entire depth. The field
capacity is uniform, ranging from 33.94% to 32.07%. The bulk density of the soil in horizon
A is 1.22 gcm−3 and increases with depth to 1.4 gcm−3 (C). The humus content decreases
with depth and is the highest in the humus-accumulative horizon A (3.62%).
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Figure 1. Location of study area. Figure 1. Location of study area.

The content of total nitrogen in the surface horizon is 0.18%. The concentration of plant
available potassium (K) in A horizon is 0.03%, and the concentration of plant available
phosphorus (P) is 0.16%, which is indicative of high concentrations of these elements in the
layer of soil that hosts the main part of the root system. Agrotechnical measures relating to
weed, disease and pest control were standard, as generally applied in the research area.
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2.2. Experiment Design

The two-year experiment was of a two-factorial split-plot design, divided into subplots.
There were three sowing periods (plots) and three levels of irrigation (subplots) (Figure 2).
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Figure 2. Design of the experiment.

Irrigation treatments included full irrigation, providing 100% of ETc (evapotranspira-
tion of the crop) (F); deficit irrigation at approximately 80% of ETc (R), and deficit irrigation
at approximately 60% of ETc (S). The same irrigation depth was applied in all irrigation
treatments, but the irrigation interval varied between the treatments. Full irrigation (F)
was applied in three-day intervals and deficit irrigation R and S in four- and five-day
intervals, respectively. Irrigation depth varied from 12 to18 mm due to the available soil
water content, sowing period, the phenological stage of the crop, and evapotranspiration.

The irrigation water was withdrawn from an artesian well located in the immediate
vicinity of the experimental field. The method was drip irrigation. Drip tapes manufactured
by Rivulis were used. The spacing between the emitters was 0.2 m, the spacing between the
drip tapes was 0.5 m (each row was irrigated by one drip tape), and the flow rate of each
emitter was 1.1 lh−1. Irrigation timing was adjusted to achieve the desired irrigation depth.
Upon sowing, the parcels were irrigated to field capacity to ensure favorable conditions
for germination and sprouting of the common bean. Table 1 shows the irrigation depth
per sowing period. There were three sowing periods: standard I (mid-April, consistent
with climate conditions in Serbia), late II (end of May/beginning of June), and late III (third
decade of June/beginning of July).

Table 1. Irrigation treatments of common bean.

Year
Irrigation Treat-
ment/Sowing

Period

I II III

Irrigation
Depth (mm)

Irrigation
Events

Irrigation
Depth (mm)

Irrigation
Events

Irrigation
Depth (mm)

Irrigation
Events

2019
F 0 0 150 9 249 15
R 0 0 117 7 180 11
S 0 0 84 5 129 8

2020
F 228 14 141 9 200 13
R 162 10 90 6 144 9
S 126 8 75 5 111 7
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Figure 3 shows the duration of growth by sowing period. The sowing dates varied
depending on weather conditions. The amount and distribution of rainfall sometimes
delayed the sowing of the late crops.

Figure 3. Growing season of common bean and sowing dates of the experiment.

2.3. Ground Monitoring
2.3.1. Meteorological Observations

An automatic weather station of the company EMS Brno was installed in the exper-
imental field to monitor climate parameters and calculate reference evapotranspiration
(ETo). The station was located on a representative spot, in the immediate vicinity of the
plots, on grass that was irrigated, cut and maintained during the season.

2.3.2. Evapotranspiration

Crop evapotranspiration (ETc) was calculated for all sowing periods and irrigation
treatments.

For an accurate estimation of a specific crop water use in real time, evaporation
and transpiration need to be considered separately. ETc was determined by multiplying
reference evapotranspiration (ETo) and the dual crop coefficient (Kc). Reference evapotran-
spiration was calculated using the FAO Penman-Monteith method. Daily values of weather
parameters were obtained from the previously mentioned weather station.

ETc = ETo× (Kcb + Ke) (1)

where ETc is the crop evapotranspiration (mm), ETo is the reference evapotranspiration
(mm), Kcb the basal crop coefficient (obtained from FAO Irrigation and drainage paper
56) [48], and Ke is the soil evaporation coefficient.

The soil evaporation coefficient (Ke) was calculated by estimating the available energy
and soil moisture regimes at the soil surface in the original FAO-56 procedure [48]:

Ke = Kr·(Kcmax − Kcb) ≤ few·Kc max (2)

where Kcmax is the maximum value of Kc following rain or irrigation; Kr is the evaporation
reduction coefficient dependent on the cumulative depth of water depleted (evaporated);
and few is the fraction of the soil that is both exposed to solar radiation and that is wetted
(0.01–1.0).
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Kcmax represents the upper limit of evaporation from any cropped surface and is
adjusted for crop height and climate:

Kc max = max

({
{1.2 + [0.04× (u2 − 2)− 0.004× (RHmin − 45)] ×

(
hc

3

)0,3
}

, {Kcb + 0.05}
)

(3)

where u2 represents the wind speed (ms−1) measured at a height of 2 m; RHmin is the
minimum daily relative humidity (%); and hc is the crop height (m)

The evaporation reduction coefficient (kr) is dependent on soil water depletion from
the topsoil layer:

Kr =
TEW − De, i−1

TEW − REW
(4)

where De,i−1 is the cumulative depth of evaporation from the soil surface layer at the
end of day i − 1 (the previous day) (mm); TEW, total evaporable water, is the maximum
cumulative depth of evaporation from the soil surface layer when Kr = 0 (mm); REW,
readily evaporable water, is the value obtained from the FAO Irrigation and drainage paper
(56) for silt loam soils, namely 10 mm up to a depth of 10 cm. When De,i−1 ≤ REW, Kr = 1.0.

TEW = 1000× (WFC − 0.5θWP)× Ze (5)

where WFC is the soil water content at field capacity (m3 m−3); θWP is the soil water content
at wilting point in the topsoil layer (m3 m−3); and Ze is the depth of the topsoil layer that
is subjected to evaporation (m), i.e., 0.1–0.15 m is recommended for row crops in Allen
et al. (1998).

The calculation of kr requires the daily water budget for the exposed and wetted
surface to determine De:

De, i−1 = ETo× Ke − (Pi + Ii − DPi) (6)

where De,i−1 is the cumulative depth of evaporation of the topsoil at the end of day i and
i − 1 (mm); Pi is the precipitation on day i (mm); Ii is the irrigation depth on day i that
infiltrates the soil (mm); and DPi is deep percolation on day i.

In R and S treatments, the plants were not well-supplied with water, therefore the
stress coefficient (Ks) was calculated [48]:

ETa = ETo× (Ks × Kcb + Ke) (7)

where Ks is the water stress coefficient, and it depends on available soil water in the root
zone.

Ks =
TAW − Dr, i−1

TAW − RAW
where Dr,i−1 is root zone depletion at the end of day i − 1 (mm); TAW is the total available
soil water in the root zone (mm); and RAW is the readily available soil water in the root
zone (mm). When Dr,i−1 < RAW, Ks = 1.0.

TAW = (θFC − θWP)× Zr (8)

where Zr is the rooting depth (m).
The calculation of Dr,i−1 requires the daily water budget for the root zone, as with

Equation
Dr, i = Dr, i−1 − Pi − Ii − DPi + ETc, i (9)

where Dr,i and Dr,i−1 are cumulative depths of transpiration in the root zone at the end of
day i and i − 1 (mm), respectively; and ETc,i is crop evapotranspiration on day i (mm).



Water 2022, 14, 3786 7 of 23

To accurately assess the effect of treatments on water use, additional calculations were
made applying the water budgeting method, using available rainfall, irrigation depth, deep
percolation and soil moisture variation data.

ETa =
P + I + ∆θ − DP

n
(10)

where ETa is actual evapotranspiration (mmday−1), I—irrigation (mm), ∆Θ—soil mois-
ture variation between two measurements (mm), and n—number of days between two
measurements.

2.3.3. Soil Moisture

The soil moisture (Sm) was measured by the standard gravimetric method on each
subplot every 7–10 days. The soil was sampled by layer, at 0–20, 20–40 and 40–60 after
heavy rainfall. The objective was the determining of the variations in soil water by sowing
period and irrigation treatment, as well as identifying any correlation with vegetation
indices.

2.3.4. Canopy Cover (CC)

The canopy cover was monitored by photographing elementary (1 m2) subplots
every 10–15 days, depending on weather conditions. Python in a JupyterLab environment
(Figure 4), developed for this particular purpose (available on demand), was used to
analyze the images. The results were presented as a percentage of the leaf area in the image
that covers exactly 1 m2.

Figure 4. Canopy cover analysis.

2.3.5. Leaf Area Index (LAI)

The leaf area was measured by an LI-3100C area meter in the same subplots and time
intervals as the canopy cover.

2.4. Vegetation Indices (VI) Determined from UAV Multispectral Imagery
2.4.1. UAV Image Acquisition

The images were captured by a Micasense RedEdge MX sensor (MicaSense, Inc.,
Wichkita, KS, USA, http://www.micasense.com/ accessed on 30 May 2022), installed in a
DJI PHANTOM 4 PRO V2 drone. Each dataset contained five spectral bands: blue, green,
red, red edge, and near infrared (Table 2). The selected flight altitude was 50 m and the
spatial resolution was 3.7 cm. Before and after each flight, an image of the Calibrated
Reflectance Panel was taken, enabling more accurate compensation for incident light
conditions and the generation of quantitative data.

http://www.micasense.com/
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Table 2. Band and spatial resolution parameters of the multispectral data.

Band
Number

Band
Name

Spatial Resolution
(cm)

Wavelength Range
(Micrometer)

Central Wavelength
(Micrometer)

1 Blue

3.7

0.465–0.485 0.475
2 Green 0.550–0.570 0.560
3 Red 0.663–0.673 0.668
4 Red edge 0.712–0.722 0.717

5 Near
infrared 0.820–0.860 0.840

The UAV was deployed on sunny days, between 11:00 a.m. and 1:00 p.m. There were
seven sorties during the study period (Table 3). Prior to image acquisition, the canopy
cover was measured by treatment, the plants were sampled for LAI determination, and the
soil was sampled for soil moisture measurement.

Table 3. Image acquisition dates during the study period.

Year 1 Year 2

4 July 2019 3 July 2020
19 July 2019 27 August 2020

16 August 2019 16 September 2020
13 September 2019

2.4.2. Image Processing and Computation of Vegetation Indices

Pix4Dmapper (https://www.sensefly.com/software/pix4d/ accessed on 30 May 2022)
software was used to generate an orthomosaic from raw aerial images. Pix4Dmapper also
served to correct the geometry in parallel. The final product was five different spectral
bands in geoTIFF format.

QGIS 3.12 software was used for further processing. The images were trimmed to
the level of experimental subplots with the Clipper application. The same software was
employed to compute the indices by the Raster Calculator. Relevant statistical data per
treatment were calculated using the Zonal Statistics tool and exported to xlsx. Calculated
Vis are represented in the Table 4.

Table 4. Vegetation indices computed from multispectral bands.

Index Equation Reference

Normalized Difference Vegetation
Index NDVI = NIR−RED

NIR+RED [49]

Modified Chlorophyll Absorption
in Reflectance Index

MCARI1 =
1.2(2.5(NIR− RED)− 1.3(NIR− GREEN))

[50]

Normalized Difference Red Edge NDRE = NIR−REDEDGE
NIR+REDEDGE [51]

Green Normalized Difference
Vegetation Index GNDVI = NIR−GREEN

NIR+GREEN [52]

Optimized Soil Adjusted
Vegetation Index OSAVI = NIR−RED

NIR+RED+0.16 [53]

https://www.sensefly.com/software/pix4d/
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2.5. Data Processing

Variance analysis (ANOVA) was used to determine the sensitivity of the vegetation
indices to variations in the parameters monitored during the experiment (Y, LAI, CC, T
and Sm), for different sowing periods and irrigation treatments. SAS software [54] was
employed for this purpose. The LSD test (5% and 1% probabilities) was applied to test
the differences between the treatments. Correlations between the VIs and the measured
parameters were determined based on Pearson’s correlation coefficients (r). The spatial
variations in the normalized difference vegetation index (NDVI) by sowing period and
irrigation treatment were analyzed.

Yields were predicted by modeling the equation of linear regression between the VIs
and the yields achieved in the first year of research. Second-year yields were used to test
model reliability, deriving a regression correlation between the predicted and achieved
yields. The yield prediction performance of the regression equation was assessed by
calculating yields and the coefficient of determination (r2).

3. Results
3.1. Climate

Figure 5a,b show the daily high, low and mean air temperatures and precipitation
levels. In 2019, the temperatures were 25.22 ◦C, 13.57 ◦C and 19.29 ◦C, respectively, for
the first period (I); 30.17 ◦C, 15.80 ◦C, and 22.98 ◦C for the second period (II) and 28.12 ◦C,
13.54 ◦C, and 20.83 ◦C for the third period (III), respectively. The largest amount of rainfall
was observed in period I (426.00 mm), followed by II (239.00 mm) and III (171.50 mm). No
irrigation was applied in period I due to the large amount of rainfall. In 2020, the average
high, low and mean daily air temperatures were 24.46 ◦C, 11.25 ◦C, and 18.11 ◦C in period
I. Similar to the previous year, these temperatures were 28.45 ◦C, 15.25 ◦C, and 22.00 ◦C
in period II, and 28.56 ◦C, 14.17 ◦C, and 21.62 ◦C in period III, respectively. The largest
amount of rainfall was recorded in period II (280.00 mm), followed by I (246.80 mm) and
III (210.00 mm). In general, the amounts of rainfall were high in both years and in all the
sowing periods, but the highest was recorded in the first period of 2019 (426 mm).

3.2. Transpiration and Evaporation

Figure 6 shows transpiration levels (T) in both years by sowing period. In 2019
(Figure 6a), the lowest transpiration level was recorded in period I (314.93 mm) and was
uniform irrespective of irrigation. Namely, the crop was rainfed because of rainy and
cloudy weather. In period II, T was 346.24 mm, 312.42 mm and 243.48 mm for irrigation
treatments F, R and S, respectively. In period III, the corresponding levels of T were
309.35 mm, 297.80 mm, and 274.80 mm. In 2020 (Figure 6b), the transpiration levels in
period I were 398.81 mm, 373.81 mm and 353.27 mm for F, R and S, respectively. In period
II, T was 433.60 mm, 389.2 mm and 377.50 mm for F, R and S, respectively. In period III, the
corresponding levels of T were 337.30 mm, 292.60 mm, and 285.5.0 mm, respectively. The
high T was as expected due to the higher stomatal conductance of the irrigated common
bean [55].
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Figure 6. Evapotranspiration by irrigation treatment and sowing periods, calculated via the dual
coefficient (IF, IR, IS, IIF, IIR, IIS, IIIF, IIIR, and IIIS): Three sowing periods (I, II and III), Actual
evapotranspiration (ETa), evaporation (E), transpiration (T), full irrigation (F), deficit irrigation R, and
deficit irrigation S in 2019 (a) and 2020 (b).

On average, evaporation was higher than transpiration 24 days after sowing in period
I, 17 days in period II, and 15 days in period III. The highest evaporation averages were
recorded in period II (94.8), which were significantly higher than in period III (78.2) and
period I (62.6 mm). The plants comparable results for late sowing were reported by
Srivastava et al. [56] for maize and Lipovac et al. [57] for common bean.

Figure 7 shows daily actual evapotranspiration (ETa), precipitation (P) and deep perco-
lation (DP) for the three sowing periods and the F irrigation treatment. Figure 7 illustrates
how rain events affected the evapotranspiration and the occurrence of deep percolation.
Frequent and heavy rainfall events reduce actual evapotranspiration values due to the
lowering of the temperature and high cloudiness, but also lead to deep percolation. Such
phenomena were representative of both years of research. However, during the first year
(2019), multi-day rainfall caused a significant fluctuation of actual evapotranspiration, and
the values of deep percolation amounted to 147 mm, 62 mm and 54 mm in sowing periods I,
II and III, respectively. High and multi-day rainfall in the first sowing period of 2019 caused
the highest values of deep percolation. During 2020, due to better distributed rainfall of
lower intensity, deep percolation ranged from 34 mm to 26 mm in sowing periods I and III,
respectively.
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Figure 7. Actual evapotranspiration (ETa), precipitation (P) and deep percolation (DP) among sowing
periods of common bean for the 2019 (a) and 2020 (b).

The highest water deficit was observed in the III-F treatment in 2020 (225 mm), and
the lowest in sowing period I in 2019, when there was an excess of water due to intense
and frequent rainfall, thus no irrigation was applied. On average, the highest water needs
were noted in sowing period III (184 mm), and the lowest irrigation needs were noted in
sowing period I, approximately 57 mm.

3.3. Soil Moisture

Figure 8a,b show the soil moisture levels in 2019 and 2020, on the days of UAV
deployment. The highest soil moisture during the two-year study period was recorded
for treatment F, amounting to 30.75% on average, followed by treatment R, 27.25%, and
treatment S, 23.66%vol, indicating that at times treatment S caused the plants to be exposed
to a mild water stress. In the case of F and R, water availability was generally good.
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Figure 8. (a) Soil moisture per UAV imagery in 2019. (b) Soil moisture per UAV imagery in 2020 for
the F, R and S treatments in three sowing periods (I, II, and III).

3.4. Leaf Area Index (LAI)

Figure 9 shows the leaf area index (LAI) trends by irrigation treatment and sowing pe-
riod. In 2019, the average maximum values of LAI were uniform, amounting to 3.55 mm−2,
3.57, mm−2, and 3.50 mm−2 for treatments F, R, and S, respectively. In the second period,
the corresponding values of LAI were 2.8 mm−2, 2.65 mm−2, and 2.41 mm−2 and in the
third period they were 3.02, 2.59, and 2.21. In the first period of the following year, the aver-
age maximum values of LAI were 3.67 mm−2, 3.51, mm−2 and 3.21 mm−2 for treatments
F, R and S, respectively. The corresponding values in the second period were 3.71 mm−2,
3.55 mm−2 and 3.11 mm−2, respectively, and in the third period they were 3.98, 3.95, and
3.78, respectively.
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Figure 9. Leaf area index (LAI) by irrigation treatments (F, R and S) and sowing periods (I, II, and III)
in 2019 (a) and 2020 (b).

3.5. Vegetation Index Sensitivity to Irrigation Treatment

Table 5 shows Pearson’s coefficients of correlation between the VIs and growth in-
dicators (CC, LAI, soil moisture) of the common bean. NDVI and MCARI11 generally
exhibited the best results for all three irrigation treatments. The correlations between
NDVI and CC/LAI of the three sowing periods were uniform and varied from 0.94–0.95 to
0.79–0.74, respectively. The correlations between MCARI11 and CC/LAI were also strong,
0.83–0.84 (CC) and 0.71–0.56 (LAI). There was a strong correlation between transpiration
and NDVI/MCARI11. The results of the other indices were also satisfactory. For example,
the correlation between GNDVI and CC/LAI/T was strong. However, the correlation
between soil moisture and the tested parameters was weak negative.

Table 5. Pearson’s coefficients of correlation between average VIs and observed parameters (CC, LAI,
soil moisture), and reference and actual evapotranspiration (ETo, ETa).

Irrigation F R S

Variable CC LAI T Sm CC LAI T Sm CC LAI T Sm

NDVI 0.94 ** 0.79 ** 0.71 ** −0.29 ns 0.95 ** 0.79 ** 0.67 ** −0.48 ** 0.94 ** 0.74 ** 0.62 ** −0.61 **
MCARI11 0.83 ** 0.71 ** 0.78 ** −0.31 * 0.84 ** 0.68 ** 0.59 ** −0.53 ** 0.83 ** 0.56 ** 0.52 ** −0.60 **

NDRE 0.71 ** 0.57 ** 0.53 ** −0.34 * 0.71 ** 0.53 ** 0.44 ** −0.59 ** 0.67 ** 0.39 ** 0.38 ** −0.60 **
GNDVI 0.66 ** 0.51 ** 0.55 ** −0.34 * 0.66 * 0.49 ** 0.45 ** −0.46 ** 0.64 ** 0.40 ** 0.41 ** −0.51 **
OSAVI 0.45 ** 0.55 ** 0.36 * −0.42 ** 0.41 ** 0.47 ** 0.37 * −0.49 ** 0.38 * 0.45 ** 0.39 ** −0.70 **

Note: *, ** and ns denote p < 0.05, p < 0.001 and “not significant”, respectively.

3.6. Mapping of Vegetation Indices for Spatial Presentation

NDVI showed the best correlation with CC and LAI of the different sowing periods
in all irrigation treatments. As such, it was selected to examine its spatial variation and
differences between irrigation treatments and sowing periods in the same periods of 2019
and 2020 (Figure 10). Regarding the treatments, NDVI averages varied from 0.28 to 0.90.
These large differences were caused by different sowing periods because the plants were
in different phenological stages. The common bean of the first sowing period was in the
flowering and pod formation stage, of the second sowing period it was in the intensive
growth stage, and of the third sowing period it was in the sprouting stage. The NDVI of
the first sowing period in 2019 varied from 0.84 (treatment F) to 0.65 (treatment S), while in
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the same period of 2020 it ranged from 0.90 (F) to 0.83 (S). The NDVI of the second sowing
period in 2019 varied from 0.54 (F) to 0.42 (S). It was much higher in the same period of
2020, from 0.82 (F) to 0.71 (R). The higher NDVI values in the second period of 2020 were
due to more favorable weather conditions and slightly earlier sowing. The treatments
for sowing period III, at a given time, were in the sprouting stage, such that their values
corresponded to the NDVIs of bare soil [58].

Figure 10. Average NDVI by irrigation treatments (F, R and S) and sowing periods (I, II, and III) on 4
July 2019 (a) and 3 July 2020 (b).

3.7. Response of LAI, CC and VI to Sowing Period and Irrigation Treatment

Table 6 shows the ANOVA test of the studied VIs by treatment and sowing period
for 2019 and 2020. In the intensive growth and full development stages, CC, LAI and VI
responded differently to the irrigation treatments and sowing periods. In 2019, the LAI
of treatment S differed considerably in periods II and III (p < 0.05 and p < 0.01). Among
the VIs, the top performers were NDVI and MCARI11, because they were able to track
differences in II-S and III-S (p < 0.05). Among the other VIs, GNDVI responded well to III-S
(p < 0.05) but showed no differences for the other treatments. In 2020, the LAI of treatment
S differed considerably in all sowing periods (p < 0.05 and p < 0.01) while in sowing periods
II and III LAI differed among all irrigation treatments. Vegetation indices (VI) could detect
water stress in sowing period I, except that there was only one image acquisition, but NDVI,
MCARI1 and GNDVI were able to track differences in II-S and III-S (p < 0.05).
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Table 6. Partial ANOVA table of variables by sowing period and irrigation treatment (2019 and 2020).

Treatment 2019 CC Yield LAI NDVI MCARI11 GNDVI OSAVI NDRE

I-F ns ns ns ns ns ns ns ns
I-R ns ns ns ns ns ns ns ns
I-S ns ns ns ns ns ns ns ns
II-F ns ns ns ns ns ns ns ns
II-R ns * * ns ns ns ns ns
II-S * * * * * ns ns ns
III-F ns ns ns ns ns ns ns ns
III-R ns ns ns ns ns ns ns ns
III-S * * * * * * ns ns

2020

I-F ns ns ns ns ns ns ns ns
I-R * ns ns ns ns ns ns ns
I-S * ** * * * * ns ns
II-F ns ns ns ns ns ns ns ns
II-R ns ** * ns ns ns ns ns
II-S * ** * * * * ns ns
III-F ns ns ns ns ns ns ns ns
III-R ns ** * ns ns ns ns ns
III-S * ** * * * * ns ns

Note: *, ** and ns denote p < 0.05, p < 0.001 and “not significant”, respectively.

NDVI and MCARI11 responded to the differences in LAI in the intensive growth,
flowering and reproductive stages, where there was water deficit and temperature stress
of the crop (Tmax. 37 ◦C). By contrast, the response of OSAVI and NDRE to the various
irrigation treatments and sowing periods was poor.

3.8. Yield Prediction via Vegetation Indices

Average common bean yields differed significantly by sowing period, from 4.43 tha−1

(IF) to 0.77 tha−1 (IIIS). The results indicated that treatments R and S provided the high-
est water productivity (data non shown), which recommended them as optimal deficit
irrigation strategies.

The VIs responded differently to the irrigation treatments and sowing periods (Table 6),
and thus affected yield predictions (Table 7). NDVI and MCARI11 could be used for valid
predictions based on II-S and III-S data. GNDVI allowed yield prediction only for III-S.
Due to the specific features of the year and number of drone sorties (collected VI data),
treatments III-R resulted in no stress such that the use of VIs would not have provided
valid yield predictions.

Table 7. Mean vegetation indices and yield prediction for common bean under different irrigation
treatments and sowing periods.

Treatment NDVI MCARI11 GNDVI

Mean SD Model r2 Mean SD Model r2 Mean SD Model r2

I-F 0.79 0.07 ns 0.57 0.08 0.92 0.06 ns
I-R 0.77 0.16 ns 0.54 0.09 0.90 0.05 ns
I-S 0.67 0.3 ns 0.53 0.01 0.91 0.02 ns
II-F 0.67 0.09 ns 0.48 0.09 0.81 0.04 ns
II-R 0.63 0.04 ns 0.45 0.3 0.75 0.03 ns

II-S 0.56 0.11 y = 794.91x
+ 3910 0.42 0.39 0.1 y = 379.89x

+ 3716 0.25 0.67 0.14 ns

III-F 0.63 0.04 ns 0.55 0.04 ns 0.82 0.04 ns
III-R 0.61 0.08 ns 0.54 0.08 ns 0.77 0.05 ns

III-S 0.51 0.10 y = 791.24x
+ 3655 0.57 0.42 0.01 y = 320.14x

+ 3501 0.20 0.65 0.12 y = 472.18x
+ 3543 0.32
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The established regression models were validated using 2020 yields. Based on the
yield prediction regression models, the performance of NDVI, MCARI11 and GNDVI
of treatments II-S and III-S varied (Table 8). The NDVI and MCARI11 of treatment II-S
predicted yields better (r2 = 0.65, y = 4.01 tha−1; r2 = 0.70, y = 4.28 tha−1) than of the third
sowing periods (r2 = 0.012, y = 3.54 tha−1; r2 = 0.020, y = 3.7 tha−1). The GNDVI of III-S
had a somewhat lower value of RMSE compared to NDVI.

Table 8. Yield model performance based on NDVI, MCARI11 and GNDVI by treatment.

Treatment NDVI MCARI11 GNDVI

Yield a r2 p Yield r2 P Yield r2 p

I-F ns ns ns ns ns ns ns ns ns
I-R ns ns ns ns ns ns ns ns ns
I-S ns ns ns ns ns ns ns ns ns
II-F ns ns ns ns ns ns ns ns ns
II-R ns ns ns ns ns ns ns ns ns
II-S 4.01 0.65 0.01 4.28 0.70 0.012 ns ns ns
III-F ns ns ns ns ns ns ns ns ns
III-R ns ns ns ns ns ns ns ns ns
III-S 3.54 0.012 0.02 3.62 0.020 0.018 3.7 0.14 0.35

a Yield—in tha−1.

4. Discussion

The irrigation treatments resulted in the highest rates of transpiration due to the larger
amount of water readily available to the common bean [55]. The second sowing period
recorded the highest averages due to high temperatures during the period of growth.
Evaporation was uniform among the irrigation treatments, but the highest rates were
achieved for the second sowing period, when the plants were exposed to high temperatures
during germination and sprouting. These findings are consistent with the results reported
for late sowing of maize by Srivastava et al. [56] and common bean by Lipovac et al. [57].

The ratio between precipitation and actual evapotranspiration clearly shows when
the greatest water deficit occurred. In the first sowing period (I) in 2019, there was no
water deficit and irrigation was absent. By contrast, deep percolation was up to 147 mm.
The lower consumption of water for the evapotranspiration compared to water income
from precipitation is attributable saturation (MVK) when the common bean (plant) has
minimized transpiration processes. Also, in this period the temperatures were lower, with
multi-day cloudy weather and precipitation. In the second year of research, there was less
deep percolation due to more evenly distributed precipitation.

As expected, the soil moisture of treatment F was the highest, but in the cases of deficit
irrigation (R and S), regardless of sowing period, the common bean was not under major
stress for prolonged periods due to favorable rainfall distributions in 2019 and 2020. Vasic
et al. [59] studied common bean growing in Serbia and found that when the distribution
of rainfall was adequate, this plant could be grown successfully as an aftercrop without
irrigation.

The leaf area index (LAI) is an important indicator because it reflects the environment
in which the crop grows [60]. In the case of annual plants, if there is no stress, LAI increases
through to the reproductive stage and then decreases as leaves gradually wilt at maturity.
In the present study, LAI varied significantly (<0.05) among the sowing periods, but also
the irrigation treatments (<0.05) of the second and third sowing periods (treatments S and
R). No significant differences were noted in the first period. Regarding the LAI trend, late
sowing periods (II and III) resulted in the plant reaching maximum growth quicker and
shedding fewer leaves. The LAI at maturity (Figure 9) was higher due to larger amounts of
rainfall during that period. In 2019 (sowing periods II and III), LAI was somewhat lower
due to a mild water deficit but mostly because of high maximum temperatures (Tmax
37 ◦C) at the intensive growth and flowering stages, which caused the common been to
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enter the reproductive stage sooner. In 2020, the maximum values of LAI were uniform
among the sowing periods and ranged from 3.97 mm−2 to 3.21 mm−2. The differences
caused by the different irrigation treatments, weather conditions, and sowing periods
were reflected in yields, consistent with the common bean LAIs reported by Karimzadeh
et al. [55], Heshmat [61], Rai et al. [43] and Boydston et al. [62] who were dealing with
different irrigation strategies.

Vegetation indices are commonly used to monitor crop growth and detect drought and
abiotic stress. The VI values in the present study exhibited a trend similar to LAI. Namely,
they increased as the biomass grew, through to the reproductive stage, followed by ageing
and the increased visibility of bare soil, as reported with regard to other crops by Duchemin
et al. [63] and Toureiro et al. [64]. The VIs sensitive to LAI were suitable for yield prediction.
There were no significant yield, LAI, CC and VI variations in the first sowing period,
regardless of irrigation treatment. This was due to the amount and distribution of rainfall
in 2019 (Figure 5a), which was such that no irrigation was required for the first sowing
period. There have been similar circumstances under other climate conditions and with
different crops [65]. The second and third sowing period (2019, 2020) exhibited significant
(p < 0.05) differences in yield among the irrigation treatments R and S, mirrored by LAI.
However, among the VIs, only NDVI, MCARI11 and GNDVI reflected differences among
treatments S. These results were due to the fact that in certain observation periods, the
plants experienced no water deficit under treatments F and R, due to irrigation scheduling
and weather conditions. In 2019, the differences in maximum NDVI during growth were
moderate. The lowest mean NDVI was observed in III-S, and the highest in I-F (Table 7).
The highest NDVI (0.89) among the treatments was recorded in the flowering and pod
filling stages. Similar values were obtained by Nemeskéri et al. [37] on snap bean (NDVI =
0.85) and Rai et al. [43] on common bean (NDVI = 0.84) and Rinaldi [66] on tomato (NDVI =
0.81). In the same period, GNDVI exhibited the highest values and the trends of MCARI11
and GNDVI were similar.

Even though the difference between the irrigation treatments is obvious (Table 1), there
were many times where rainfall just before irrigation treatments R and S created favorable
conditions for common bean growth and development while saving water, which resulted
in high yields in those treatments. The significant differences between the three sowing
periods, despite favorable amounts and distributions of rainfall, were likely due to high
temperatures during the flowering and reproductive stages of sowing periods II and III,
resulting in reduced pollination efficiency and pod abscission. In their study on the effect of
high temperatures and drought stress on common bean, Monterroso et al. [67], Konsens [68]
and Herrera [69] drew similar conclusions. In the present research, the sowing period had
a significant effect (<0.01) on the yield of the common been, but due to specific weather
conditions (good rainfall distribution), there were no significant differences between the
yields of treatments IIF and IIR, suggesting that common bean can be grown effectively
under mild water stress (Table 6).

A strong correlation was established between NDVI/MCARI11/GNDVI and LAI
under the different irrigation treatments, indicating that VIs can be very useful for nonde-
structive monitoring of crop status and yield prediction. Similar coefficients of correlation
between NDVI and LAI (r = 0.85) were reported by Hoffman et al. [70], who studied
irrigated barley. Strong correlations between NDVI (r = 0.90)/GNDVI (r = 0.96) and LAI
were established by Lelong et al. [71] with wheat and Rai et al. [43] with common bean.
Rinaldi et al. [66] also reported a significant correlation between LAI and NDVI in irrigated
snap bean in dry years (r = 0.82 and r = 0.95). In the present study, a higher sensitivity
of LAI to yield, compared to the VIs, stems from the fact that LAI was monitored every
7–10 days during growth, which facilitated the tracking of crop development under dif-
ferent treatments. To determine yields more accurately by using UAVs, the objective of
future research will be to increase the number of aerial image acquisition sorties during
the season, especially in the intensive growth stage and at times when the crop is exposed
to drought stress. The VIs were still useful for tracking the status and predicting yields of



Water 2022, 14, 3786 19 of 23

the common bean by irrigation treatment and sowing period. Furthermore, a satisfactory
correlation was established between the VIs (NDVI and MCARI11) and transpiration of the
common bean, suggesting that these indices can be used to assess crop transpiration and
evapotranspiration.

The study showed that NDVI, MCARI1 and GNDVI were solid indices for predicting
the yields of treatments II-S because they were able to detect the water stress responsible
for reduced yields. Somewhat better results were reported by Spitkó et al. [72] and da
Silva et al. [73]. In addition, Ranjan et al. [44] proposed using NDVI and report r = 0.62,
as well as r = 0.54 for GNDVI, with regard to pinto bean yield prediction. Zhou et al. [40]
recommend GNDVI to identify and track drought stress, as well as predict pinto bean
yields, as they established strong correlations between that index and yield (0.7 for the early
stage of growth and 0.87 mid-growth). Increament in number of UVA could potentially
lead to better yield prediction of common bean. In the present research, significantly lower
correlation coefficients of sowing period III were due to an unexpected decrease in yield
caused by an invasion of forest bugs (Pentatoma rufipes) in the reproductive stage, which
slowed down pod formation and extended the reproductive stage. Given that the insects
did not damage the leaves, only the pods, there was no VI response. Even though the
results indicated that the spectral reflection of the vegetation cover can be consistent with
LAI and CC, the VIs can be highly effective for predicting yields by sowing period and
irrigation treatment. However, pests cannot be detected in some cases based on the VIs, so
in situ inspection of the crop is indispensable. Hunt et al. [74] studied the damage caused
by potato beetles and found that it was difficult to identify an insect attack based on NDVI.
They detected damage by object-based image analysis but indicated that reliable results
required a lot of effort.

The spatial variation of NDVI by sowing period and irrigation treatment is shown
in Figure 10. A color scale describes the crop status in the field. For example, the plants
that were not exposed to water stress exhibited a high NDVI and their color is bright
green. Mapping the water deficit of irrigated crops, Veysi et al. [75] and Stone et al. [39]
concluded that NDVI was a good indicator of spatial differences in water stress during
the entire season. The value of this index also depended on the phenological stage, such
that the green color that represents biomass and the red color that represents bare soil can
provide insight into the correlation with CC and LAI, and potentially be used to monitor
phenological stages by sowing period, as reported by [76–78].

A spatial representation of VIs is useful in many ways from a data interpretation
perspective. Namely, if a person lacking knowledge about agricultural activities tries to
interpret the data, they may arrive at the wrong conclusions. For example, a low NDVI
(say 0.3) might be indicative of a severe drought or lack of nitrogen (yellow leaves), but
instead it reflects a late sown crop whose LAI and CC are lower. Therefore, it is extremely
important to correlate CC/ LAI/T/SM with VIs to assess crop status over an extended area.

5. Conclusions

This research showed that the growth and water supply of the common bean, by
sowing period and irrigation treatment, can be monitored by multispectral UAV imagery.
Strong correlations were established between VIs and LAI, CC and T. The correlation with
soil moisture ranged from strong to satisfactory. The results indicate that NDVI, MCARI1
and GNDVI can correlate strongly with ground parameters (LAI, CC, yield, and T). A
low-flying UAV proved to be useful for monitoring crop status and predicting yield and
water stress by sowing period and irrigation treatment. However, it is still necessary to
collect information in the field in order to ensure better data interpretation. With that
prerequisite in mind, the rapid acquisition of reliable data by remote sensing can reduce
labor requirements and thus cut operating costs. NDVI, MCARI1 and GNDVI appeared
to be reliable indices for predicting common bean yields by sowing period and irrigation
treatment. However, remote sensing did not reveal a pest invasion, so that adequate yield
predictions require observations in the field or object-based image analysis. The VIs from
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the UAV could be used for early water stress detection, irrigation scheduling, irrigation
uniformity and spatial crop monitoring. More UAV sorties would have provided better
insight into the differences in water deficit between the phenological stages of the common
bean, and consequently more reliable assessments of all the studied cases. For more
accurate monitoring of water stress and better yield prediction, future research should
be based on timely and more frequent drone observations. Expanding the research in
terms of pairing the application of a multispectral camera together with a thermal camera
could improve the detection of water stress and enhance the yield prediction equation of
common bean.

Author Contributions: Conceptualization, A.L. and R.S.; methodology, AL., R.S., M.Ć., A.B. and
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