

Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION IV

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 21-23. September 2015

THERMAL TREATMENT OF OXIDES IN DIFFERENT ATMOSPHERES

<u>Nebojša Labus</u>¹, Zorka Z. Vasiljević¹, Slavko Mentus^{2,3}, Vladimir B. Pavlović¹, Miloljub Luković⁴, Maria Vesna Nikolić⁴

¹Institute of Technical Sciences of SASA, Knez 35, 11000 Belgrade, Serbia

²Faculty of Physical Chemistry, Studenski trg 12-16, 11158 Belgrade, University of

Belgrade, Serbia

³Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

⁴Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, University of Belgrade, Serbia

Aim

TiO₂ nanopowder, Alfa Aesar 99.7% anatase with sizes of particles from 10 nm to 15 nm

ZnTiO₃ nanopowder, Aldrich [CAS 112036-43-0] Comercial , Micro powder Composition: $Mn_{0.63}Zn_{0.37}Fe_2O_4$, 93 wt.% and Fe_2O_3 7 wt.%

Device: VEGA TS 5130MM

TiO₂, ZnTiO₃, Mn_xZn_{1-x}Fe₂O₄

Stoichiometric - nonstoichiometriccompounds15 nm30 nm>1µm

Digital Microscopy Imaging

Technical approach

Gas chamber in the dilatometric device and vacuum and atmosphere exits

Theory about point defects

Pergamon

J Phys Chem Solids Vol 59, No. 4, pp 507-525, 1998 © 1998 Elsevier Science Ltd Printed in Great Britain All rights reserved 0022-3697/98 \$19.00 + 0.00

PII: S0022-3697(97)00205-9

POINT DEFECTS AND TRANSPORT IN NON-STOICHIOMETRIC OXIDES: SOLVED AND UNSOLVED PROBLEMS

RÜDIGER DIECKMANN

Figure 6.4 (a) The formation of an oxygen vacancy by the loss of an oxygen atom to the gas phase. This is a nonstoichiometric reaction because the crystal chemistry changes as a result. Note that as drawn, the electrons are localized at the vacancy site, rendering its= effective charge zero. (b) A V_0^{\bullet} site is formed when one of these electrons is excited intothe conduction band. (c) The escape of the second electron creates a $V_O^{\bullet\bullet}$ site.

Fig. 3. Schematic plot of the concentrations of cation vacancies, $[(V_{Me^{2+}})'']$, and of holes, [h], in a model oxide of the type Me1-4O with cation vacancies and holes as the majority defects and very small point defect concentrations.

Figure 6.8 (a) Stability domains of various phases in the Mn-O system and the corresponding deviations in stoichiometry.⁷⁸ (b) Phase diagram of Fe-O system, x_0 is mole fraction of oxygen, and (c) stability domains of the various phases in Fe-O system.⁷⁹

$$x = \frac{b}{a} \pm \delta \begin{array}{c} M_{a}O_{b} \\ TiO_{2}, b/a=2/1=2 \\ x_{min}=1.992 \\ x_{max}=2.00 \\ \Delta x=0.008 \\ -logP_{O2} \\ Min=25.07 \\ Max= / \end{array}$$

Air $pO_2 = 21278 Pa$,

Nitrogen $pO_2 = 60 Pa$

 $-\log_{10}pO_2 = 4.3279$

Pergamon

PII: S0022-3697(97)00205-9

J Phys Chem Solids Vol 59, No. 4, pp 507-525, 1998 © 1998 Elsevier Science Lid Printed in Great Britain All rights reserved 0022-3697/98 \$19.00 + 0 00

POINT DEFECTS AND TRANSPORT IN NON-STOICHIOMETRIC OXIDES: SOLVED AND UNSOLVED PROBLEMS

RÜDIGER DIECKMANN

Fig. 19. Variation of δ in single-crystal and polycrystalline Fe_{3- δ}O₄ at 1100°C.

Fig. 20. Oxygen activity dependence of the iron tracer diffusion coefficient, D_{Fe}^* , in single-crystal and polycrystalline Fe_{3- δ}O₄ [35] at 1115°C.

Results

Dilatometry and TG/DTA $Mn_{1-x}Zn_xFe_2O_4$

SEM Mn_{1-x}Zn_xFe₂O₄

Nitrogen

Air

TiO_2 nano powder TiO_2 micro powder TG/DTA

TiO_2 nano powder TiO_2 micro powder TG/DTA

SEM TiO₂ sintered - reheated

Nitrogen

Air

20

SEM ZnTiO₃ sintered - reheated

Air

Nitrogen

23

CONCLUSION

• Oxides TiO_2 , $ZnTiO_3$ and $Mn_{1-x}Zn_xFe_2O_4$ showed different dimension changes behavior during heating in air and nitrogen atmosphere.

• Microstructures observed on breakage showed completely different structure.

• Thermo gravimetric and differential thermal analysis showed that powder particle size plays fundamental role in atmosphere influence.

