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Due to climate changes and increased demands of different water users (agriculture, 
industry, domestic) water becomes scarce resources worldwide. Since irrigated agri-
culture is the one of the largest consumer of these resources (so-called blue water 
footprint), irrigation management must be shifted from maximal production per crop 
area to maximal production per unit of water used by crops. Among the strategies for 
reducing water footprints, changing the full irrigation to the reduced crop’s water supply 
(deficit irrigation techniques) is one of the options. In this mini-review, we present the 
latest advances of partial root-zone drying (PRD) applications in different agricultural 
plants, with the special emphases on the PRD effects on increasing WUE, yield and yield 
quality. We describe two PRD practical approaches (alternate and fixed), background 
of PRD induced increase in yield and water use efficiency and improved understanding 
about nutrient use efficiency. The evidence of PRD effect on the increase in nutritional 
and health attributes of yield in different species is also presented. Because of limited 
available data, further research is needed to understand complex biosynthetic pathway 
and synthesis of nutritive- and health-related metabolites and antioxidants in PRD-
treated plants. Practical application and promotion of this knowledge will allow farmers 
in water scarce areas to adapt PRD not only as a strategy for saving water, improving 
nutrient use and increase/sustain yield, but also for producing food with enhanced 
nutritive and health characteristics.

Keywords: health-related attributes, nutrient use efficiency, partial root-zone drying technique, quality-related 
attributes, water use efficiency, yield

inTRODUCTiOn

In different countries, water become limited resource due to the climate change (especially severe 
and frequent drought), environmental pollution and increased demands of different water users 
(agriculture, industry, and domestic). Water is necessary for plant growth and development and 
consequently for a high and stable yield of agricultural plants. Because of the high proportion of 
water used for agricultural purposes and the projections that water scarcity due to unpredicted 
climate change will increase in the future (Mancosu et al., 2015), there is a constant need to focus 
on efficient use of available water resources in order to increase crop productivity per unit of used 
water.

In accordance with this goal in many countries, concept of water footprint (WFP) is used to 
provide accurate and useful assessment of water demands (Schmitz et al., 2013). For food crops 
(Costa et al., 2016), WFP concept includes all the fresh water consumed per unit of product (e.g., per 
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liter of wine), namely to grow the crop, water used in post-harvest 
processing and also polluted water produced (volume of fresh 
water required to assimilate the pollutant load). In such WFP 
calculations, irrigated agriculture (so-called blue water footprint) 
is a major consumer of water (Hoekstra and Mekonnen, 2012).

One of the strategy for reducing water footprints, and saving 
available water resources for agricultural production is to reduce 
the amount of irrigation water compared to the amount used 
for crop’s full irrigation (deficit irrigation techniques). Deficit 
irrigation techniques in the use are: regulated deficit irrigation 
(RDI) and partial root-zone drying (PRD) and they are based 
on the knowledge of crop’s reactions to drought (FAO, 2002). 
RDI is irrigation technique when the amount of applied water 
is less than current crop’s water needs during a specific period of 
their growth and development. PRD is irrigation technique when 
the one side of the plant’s roots is exposed to drought and in the 
same time other side is irrigated. To avoid drying of the roots the 
wet/dry sides are rotated. Theoretical background of PRD is that 
irrigation of the part of root system keeps the upper part of crops 
in favorable water conditions, while the drought in other part 
of the roots induces formation of root chemical signals (mainly 
hormones). Root born chemical signals are transported to the 
upper part of the plants to induce reduction of stomatal conduct-
ance and shoot growth (Dodd et al., 2006). Partial reduction of 
stomatal conductance prevent serious water loss by transpiration 
and reduction of CO2 assimilation, that could happen in dry 
conditions (Chaves et al., 2007).

The result of successful application of both deficit irrigation 
techniques (RDI or PRD) and comparison of their effects in 
terms of increase WUE and sustained/improved yield depends 
on several factors, especially on soil characteristics, the degree 
and duration of applied water deficit as well as crop species and its 
phenological phases. This leads to a discrepancy in the published 
research results. In his meta-analysis, Sadras (2009) concluded 
that from the aspects of water productivity both PRD and RDI 
do not differ significantly. Very recently, in another meta-analysis 
Adu et al. (2018) did not report differences in relative crop yield 
between PRD- and RDI-treated crops, but they pointed out that 
the effect on yield depends on crop species and soil structure. 
However, Dodd (2009) comparative study of the effects of PRD 
and RDI on the yield of different crop species have shown that 
unlike PRD, RDI plants were more exposed to the potential 
reduction of yield. This risk could be diminished by close moni-
toring plant water status in order to avoid development of severe 
drought stress that could significantly reduce yield. Advantages of 
the PRD in comparison to RDI is also based on the enhancement 
root growth and development and better control of vegetative 
vigor and assimilate partitioning (Mingo et  al., 2004; Costa 
et al., 2007). Disadvantages of PRD system compared to RDI, are 
additional, more costly adapted irrigation systems which allowed 
interchangeable wetting and drying of the root-zone part and the 
time of switching required in operating PRD irrigation.

The aim of this review is to provide the latest advances of PRD 
applications in different agricultural and horticultural plants, with 
the special emphases on the PRD effects on water use efficiency, 
yield and yield/fruit quality. For explaining the physiological and 
biochemical background of deficit irrigation methods, including 

PRD technique, several review papers could be recommended 
(Costa et al., 2007; Fereres and Soriano, 2007; Ruiz-Sanchez et al., 
2010; Sepaskhah and Ahmadi, 2010; Stikić et al., 2010; Du et al., 
2015; Chai et al., 2016; Galindo et al., 2017; Kang et al., 2017).

PRD PRACTiCAL APPROACH

The PRD has been successfully applied to a large number of crops 
and in different production systems. A number of trials with the 
PRD demonstrated that the main benefit of PRD irrigation is the 
reduced use of water for irrigation (Sepaskhah and Ahmadi, 2010). 
Many results indicated that for the successful application of PRD 
several factors should be taken into consideration, including: 
crops and variety-rootstock interaction, type and characteristics 
of soil, agricultural practice, specific agro-climatic conditions etc. 
(De la Hera et al., 2007; Chaves et al., 2010; Yactayo et al., 2013).

Partial root-zone drying practical approaches are based on 
root-sourced signaling mechanism and included the following 
types: fixed and alternate partial root-zone drying. In fixed PRD, 
the one half of the root system is irrigated throughout the growing 
season, while the other half is exposed to soil drying during the 
whole growth period. In alternate PRD watering and drying parts 
of root zone are changed, which enables the wet side of the root 
to dry down and dry side to be fully irrigated.

During PRD treatment the irrigation must be rotated regularly 
from wet to dry side in order to avoid drying of the roots from 
dry side and at the same time to allow a continuous production 
and transport of root signals. The frequency of the switch of the 
irrigated and partially dried root-zone sides also depends on soil 
characteristics and other environmental factors (rainfall and 
temperature). Soil water potential is usually applied as indicator 
for changing the side for irrigation in PRD system. However, 
modeling approach could be also used for irrigation scheduling. 
Recently, the basic model used to predict time to switch sides for 
irrigation and based on xylem ABA accumulation in PRD-treated 
potato plants (Liu et al., 2008), was enhanced and integrated in 
an adapted version of agro-ecological model DAISY (Plauborg 
et al., 2010). The model is developed to simulate the mechanisms 
underlying the water saving effects of the PRD.

Partial root-zone drying strategy also includes a different 
approach, as “static” PRD irrigation where a reduced amount of 
water received by the plant was constant during the whole growth 
period. Another approach is “dynamic” when the amounts of irri-
gated water were changed according to specific crop’s phenologi-
cal phase (Jensen et al., 2010; Jovanovic and Stikic, 2012; Ahmadi 
et  al., 2014). PRD may be applied by different field irrigation 
methods (drip lines, furrow, micro-sprinkler etc.) depending on 
the crop species or soil texture or climate variables (Kang and 
Zhang, 2004).

Climate change impact on decreasing precipitation and rising 
temperatures could be mitigated by application of PRD method 
as a water saving strategy, especially in the water scarcity areas. 
However, the future predictions in a climate change scenario 
included also the increase greenhouse gases, and therefore, 
elevated CO2 concentrations together with water shortage will 
be an additional challenge for PRD. Recently, experimental stud-
ies with elevated CO2 concentrations condition indicated that 
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TAbLe 1 | The effect of partial root-zone drying (PRD) on water use efficiency 
(WUE) increase and sustained or improved yield in different agricultural crops 
(selected references).

Crops Species Reference

Perennials Grape dos Santos et al., 2003, 2007; Chaves et al., 
2007; De la Hera et al., 2007; Du et al., 2008; 
Intrigliolo and Castel, 2009; Romero et al., 2016

Apple Talluto et al., 2008; Zegbe and Serna-Perez, 2012; 
Francaviglia et al., 2013; Du et al., 2017

Pear Kang et al., 2002
Olive Wahbi et al., 2005
Lemon Coelho et al., 2012; Pérez-Pérez et al., 2012
Orange Hutton and Loveys, 2011; Consoli et al., 2017
Mandarin Kirda et al., 2007a; Panigrahi et al., 2013
Grapefruit Kusakabe et al., 2016
Pomengranate Parvizi et al., 2014
Mango Spreer et al., 2009; dos Santos et al., 2015
Papaya de Lima et al., 2015
Strawberry Dodds et al., 2007
Raspberry Grant et al., 2004

Grain crops Maize Sepaskhah and Parand, 2006; Du et al., 2010; 
Yang et al., 2010

Wheat Sepaskhah and Hosseini, 2008; Du et al., 2010; 
Yang et al., 2010

Rice Yang and Zhang, 2010
Sunflower Sezen et al., 2011
Cotton Du et al., 2006; Kirda et al., 2007b; Tang et al., 

2010

Vegetables Tomato Kirda et al., 2004; Zegbe et al., 2004; Campos 
et al., 2009; Affi et al., 2012

Potato Liu et al., 2006; Shahnazari et al., 2007; Ahmadi 
et al., 2010; Jensen et al., 2010; Jovanovic et al., 
2010; Yactayo et al., 2013

Sugar beet Abyaneh et al., 2017
Pepper Dorji et al., 2005; Shao et al., 2008; Foday et al., 

2012; Sezen et al., 2014
Bean Wakrim et al., 2005; Gencoglan et al., 2006
Eggplant Zhang et al., 2014
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photosynthetic rate and grain yield as well as water productivity 
in maize plants were higher under deficit irrigation than in full 
irrigation (Li et  al., 2018). These results open a new direction 
to test the efficiency of PRD strategy in specific agro-ecological 
conditions and under interaction of different environmental 
variables.

wUe AnD YieLD

Usually, water use efficiency (WUE) is considered as a measure 
of plant’s efficiency in using water. WUE is a ratio between two 
physiological processes (i.e., transpiration and photosynthesis, 
i.e., carbon assimilation) or between agronomic parameters (i.e., 
yield and crop water use). WUE is a complex multitraits charac-
ter related to different physiological and biochemical processes 
(involved in carbon and water uptake and transpiration) and 
controlled by many genes and environmental influences. In many 
environmental conditions, the challenge is to balance crop loss of 
water during transpiration with the efficiency of carbon uptake 
during photosynthesis, and therefore the increase of WUE is not 
always connected with the increase in yield (Blum, 2009).

Water use efficiency (WUE) can be defined in different ways 
depending on plant organization levels (Medrano et al., 2015). 
At crop level WUE as a ratio of the crop yield (marketable or eco-
nomic) to total available water used by crops is most important 
from agronomic aspect. Many data from literature showed that 
the deficit irrigation techniques, especially PRD, may increase 
WUE and in same time sustain or improve the yield of irrigated 
plants (Table  1). Such effects could be explained by a wide 
range of PRD-specific positive responses of plants. Changes in 
stomatal morphological characteristics observed in PRD plants 
(smaller guard cells, lower stomata density) and lower conduc-
tivity affected transpiration and contributed to increase of water 
use efficiency, as well as enhance the photosynthetic capacity 
have positive impact on net photosynthesis (Wang et al., 2012b; 
Yan et al., 2012). Also, reduction of vegetative vigor and canopy 
area allowed better exposure of grains/fruits to solar radiation 
(more light penetrate the canopy) and induced remobilization 
of assimilates from vegetative tissues to the fruits/grains that 
consequently could improve yield and its quality (dos Santos 
et al., 2007; Chaves et al., 2010; Yang and Zhang, 2010; Zhang 
et al., 2010; Price et al., 2013). In addition, promotion of root 
growth and development and greater root biomass under PRD 
conditions increase plant hydraulic conductivity and water 
uptake (Mingo et al., 2004; Ahmadi et al., 2011; Hu et al., 2011; 
Pérez-Pérez et al., 2012).

Several literature data also showed that PRD increase 
the activity of soil microorganisms and higher root nutrient 
uptake capacity (Li et  al., 2010; Sun et  al., 2013b; Wang et  al., 
2013). Recently, Dodd et  al. (2015) explained the increase of 
nitrogen and phosphorus uptake from different PRD-treated 
crops (Shahnazari et al., 2008; Jovanovic et al., 2012; Liu et al., 
2015; Sun et al., 2015; Wang et al., 2017) with so-called “Birch 
effect.” The effect was named on the honors of Birch (1958) 
who discovered that re-wetting of previously dry soil induce an 
increase in N mineralization. According to Dodd et al. (2015), 
the cause of “Birch effect” are changes of physical processes (soil 

aggregate disruption and consequent release of reactive P form), 
and biological processes (stimulation of soil microbes biomass 
and activities in mineralization of soil organic compounds) and 
both processes are coupled. However, much research efforts with 
different soil types should be done to determine when the rate of 
nutrient uptake increases under PRD. Also, the challenge is also 
to investigate the competitions between soil microbes and plants 
for nutrient resources.

Although there is not enough results about connection 
between phytohormonal signaling and nutrient use, Kudoyarova 
et al. (2015) showed that availability in water supply and mineral 
nutrients modified phytohormonal status (ABA and cytokinins). 
Beis and Patakas (2015) results also confirmed that ABA/CKs 
ratio modulated physiological and biochemical responses in PRD 
and RDI plants. In PRD plants, cytokinins controlled stomatal 
reaction and shoot growth, while ABA concentration play a dom-
inate role in stomatal responses to drought in RDI grapevines. 
Recent comparative study indicated that alternate PRD crops 
have a higher yield compared to fixed PRD (Dodd et al., 2015). 
Alternating wet and dry zones modifies phytohormonal signaling 
(ABA and CK) and induces changes in physical and biological 
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TAbLe 2 | The effect of partial root-zone drying (PRD) on improved yield quality- and health-related properties in different agricultural crops (selected references).

Crops Species Quality-related 
properties

Health-related metabolites Reference

Perennials Grape TSS dos Santos et al., 2003; Antolín et al., 2008
TSS/TA Vitamin C Du et al., 2008

Anthocyanins, phenols Antolín et al., 2006; Chaves et al., 2007; dos Santos et al., 2007; Bindon et al., 
2008; Conesa et al., 2016; Romero et al., 2016

Resveratrol, Antioxidant 
capacity

Conesa et al., 2016

Aminoacids Romero et al., 2015, 2016
Polyamines Antolín et al., 2008

Apple Color, TSS Fallahi et al., 2010; Francaviglia et al., 2013
Firmness Talluto et al., 2008

Pear TSS O’Connell and Goodwin, 2007
Olive Oils Polyphenols, antioxidants Aganchich et al., 2007, 2008
Orange TSS, TA Hutton and Loveys, 2011; Consoli et al., 2017

Color Flavonoids Grilo et al., 2016
Pomengranate TSS Parvizi and Sepaskhah, 2015
Strawberry Vitamin C, ellagic acid Dodds et al., 2007

Grain crops Cotton Fibers Tang et al., 2005

Vegetables Tomato Color, TSS Davies et al., 2000; Zegbe et al., 2004; Casa and Rouphael, 2014
Sugars, organic 
acids

Yang et al., 2012; Sun et al., 2014 

TA Campos et al., 2009; Casa and Rouphael, 2014
Ca, Mg, P, K Sun et al., 2014

Vitamin C Xu et al., 2009; Yang et al., 2012; Bogale et al., 2016
Lycopene, β-carotene Bogale et al., 2016
Phenols, antioxidant activity Tahi et al., 2008; Jensen et al., 2010; Marjanovic et al., 2012; Bogale et al., 2016

Potato N Shahnazari et al., 2008; Wang et al., 2009; Jovanovic et al., 2010
Starch Antioxidant activity Jovanovic et al., 2010

Sugar beet Sugars Topak et al., 2016; Abyaneh et al., 2017
Pepper TSS Shao et al., 2008

TSS, total soluble solids; TA, titrable acidity.
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processes in the soil environment with feedback on soil nutrient 
availability and as a result consequently improves crop nutrition.

CROP AnD FRUiT QUALiTY

Results from diverse agricultural species also demonstrated a 
beneficial effect of PRD on quality of yield and its nutritional 
or health values (Table 2). This is of particular importance for 
fruit and vegetables, which are important sources of bioactive 
components that have increased nutritional and health values.

Chemical components responsible for fruit nutritional values 
are mainly primary metabolites as sugars, proteins, lipids or 
minerals, although for the health-promoting fruit value, different 
secondary metabolites and antioxidant (carotenoids, flavonoids, 
phenolic compounds, etc.) are of special importance. However, 
despite the fact that PRD induces different crop/fruit quality 
parameters (both nutritional and health promoted), the number 
of published results is smaller compared to the effects of PRD 
on WUE and yield (Tables 1 and 2). Also, there is a very limited 
number of papers that explain the metabolic and molecular 
background of the impact of PRD on the quality of fruits/grains/
tubers.

Because the plants under PRD are exposed to a certain 
degree of water stress, their reaction toward the accumula-
tion of the metabolites responsible for the nutritional and the 

health-promoting value of their fruits/grains/tubers could 
be related to the effects of drought. Plants respond to drought 
with the activation of several signaling pathways resulting in a 
change of gene expression and enhancement of the biosynthesis 
of primary and secondary metabolites relevant for crop qual-
ity (Wang and Frei, 2011; Stagnari et  al., 2016). According to 
Fanciullino et al. (2014) water stress may influence the secondary 
metabolism through two interactive mechanisms: the changes of 
primary metabolite transport (major source in the biosynthesis 
of carotenoids and ascorbic acid) or oxidative stress which could 
affect the biosynthetic pathways of antioxidant compounds. 
However, the understanding the secondary metabolic pathway 
in drought or deficit irrigation conditions is challenging because 
its components are more qualitative than quantitative compar-
ing to primary metabolism. Current transcript and metabolite 
analysis showed that grape berries respond to drought by stimu-
lating production of secondary metabolites (phenylpropanoids, 
zeaxanthin, monoterpenes), which have significant potential to 
affect both, grape and wine antioxidants and flavor characteristics 
(Savoi et al., 2016).

Concerning PRD, results of Francaviglia et  al. (2013) 
demonstrated that the improved peel color of apple fruit 
under PRD was the result of changes in canopy structure 
and increased WUE and NUE, while total soluble solids 
accumulation (TSS) in the fruits may be due to translocation 
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of assimilate from the leaves to fruits or metabolic changes. 
Metabolic changes, regulated by PRD induced phytohormones 
(ABA and cytokinins), could be the result of higher conversion 
of starch to sugar, enhanced activities of enzymes involved in 
carbohydrate metabolism (starch-breaking, invertase, etc.) or 
ex novo synthesis of sucrose in the fruits (Ruan et al., 2010; Yang 
and Zhang, 2010). Results of Sun et al. (2013a) showed that the 
concentration of ABA was higher in xylem sap of PRD-treated 
tomato in relation to RDI plants. Higher accumulation of ABA 
in the fruits stimulates the activity of enzyme invertase and 
as a result the concentration of sugars hexose in the fruits is 
increased (Ruan et al., 2010).

Partial root-zone drying also has significant effects on sec-
ondary metabolites that are of special interest as phytochemicals 
responsible for quality- or health-related characteristics and 
antioxidants of fruits/grains. Results of Antolín et al. (2006, 2008) 
showed that under PRD changes in ABA content improved berry 
quality by increasing anthocyanin content and that increased 
mRNA induced accumulation of genes responsible for antho-
cyanin biosynthetic pathway (Jeong et  al., 2004). According to 
Romero et  al. (2016) reduced vegetative growth and increased 
light penetration into the canopy in PRD vines together with the 
increased ABA content and salicylic acid (in berries at harvest) 
might have an increasing effect on production of phenolic com-
pounds which have a different roles (as antioxidants, stabilizators 
of anthocyanins, for wine color, etc). The same study reported 
that elevated amino acids concentration was also associated with 
their role as antioxidants and osmoprotectants as well as precur-
sors for the synthesis of some aromatic substances important for 
the taste of wine.

Another challenge for PRD technique is that the exposure 
of plants to mild drought stress induced by PRD condition also 
increases accumulation of reactive oxygen species (ROS) with a 
harmful effect on cells. Increased activity of antioxidative enzymes 
such as superoxide dismutase, catalase, and guaiacol peroxidase 
in PRD plants (Aganchich et al., 2007; Lei et al., 2009) indirectly 
indicated that some degree of drought-induced oxidative stress 
could be generated under PRD conditions. Novel proteomic 
analyses of PRD tomato revealed that some of antioxidative 
enzymes were upregulated during fruit expansion phase and also 

indicated their potential role in protection of fruits against the 
mild drought stress induced by PRD (Marjanovic et al., 2012). 
Also, the results of Jensen et al. (2010) and Jovanovic et al. (2010) 
demonstrated that elevated antioxidant activity in PRD-treated 
potato and tomato plants had a beneficial effect on their nutrient 
contents.

COnCLUSiOn ReMARKS

Practical implementation of the PRD provides the potential to 
increase water and nutrient use efficiencies and to improve the 
nutritional and health attributes of the different agricultural 
species, and in some cases sustain or even increase their yield. 
Although recent results explained that re-watering dry soil under 
PRD induce changes of different processes which affect soil N 
and P and their uptake by plants, more research is necessary 
for understanding the relationships between roots and soils 
microorganisms for these and other nutrients in different soil 
types and environmental conditions. The challenge is also to 
understand hormonal signaling under changes of nutrient and 
water resources and, particularly the role of cytokinins. Because 
of limited available data, further research is needed to understand 
complex biosynthetic pathway and synthesis of nutritive- and 
health-related metabolites and antioxidants in PRD-treated 
plants. Practical application and promotion of this knowledge 
will allow farmers in water scarce areas to adapt PRD not only as 
a strategy for saving water, improving nutrient use, and increase/
sustain yield but also for producing food with enhanced nutritive 
and health characteristics.
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