
30
0

CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 76(1) JANUARY-MARCH 2016CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 76(3) JULY-SEPTEMBER 2016

Association analysis is a relatively novel approach in 
quantitative traits studies that allows high resolution mapping 
and time efficient and direct application on breeding material. 
Since the markers, which are close to the quantitative trait 
loci stable across environments and genetic backgrounds, 
may be valuable for marker assisted selection, we chose 
microsatellite markers previously linked to traits of interest 
in various mapping studies. A set of 36 microsatellite markers 
positioned near important maize (Zea mays L.) agronomic 
loci was used to evaluate genetic diversity and determine 
population structure. To verify the associations between 
the markers and traits, a panel of diverse maize inbred lines 
was genotyped with microsatellites and phenotyped for 
flowering time, yield and yield components. A relatively 
high level of polymorphism detected in number of alleles per 
locus (8.2), average polymorphic information content value 
(0.64), and average gene diversity (0.684) lines showed the 
analyzed panel of maize inbred contained significant genetic 
diversity and was suitable for association mapping. The 
population structure estimated by model-based clustering 
method grouped maize inbred lines into three clusters. The 
association analysis using the general linear and mixed linear 
models determined significant correlations between several 
agronomic traits and three microsatellites on chromosomes 
3, 5, and 8, namely umc1025, bnlg1237, and bnlg162 
consistent across the environments, explaining from 4.7% 
to 18.2% of total phenotypic variations. The results suggest 
that the chromosome regions containing quantitative trait 
loci (QTLs) associated with multiple yield-related traits 
consistently across environments are potentially important 
targets for selection. 
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INTRODUCTION

A large number of maize (Zea mays L. subsp. mays) traits 
important from an agronomic perspective have a complex nature, 
are governed by numerous genes and influenced by environmental 
factors and interaction between genes and environment. Many 
findings support the hypothesis that complex traits are controlled 
by few quantitative trait loci (QTLs) with large effects and many 
QTLs with small effects (Salvi and Tuberosa, 2005; Buckler et al., 
2009; Poland et al., 2011).
	 For a long time, QTL mapping has been the method of choice 
to explore the number, locations and effects of genes that affect 
a particular trait. The major shortcomings of QTL mapping are 
the ability of the method to identify maximum two alleles in 
genetically narrow-based biparental populations, low resolution 
power and the inconsistency in detected QTLs in different genetic 
backgrounds and environments. This makes the information on 
QTLs found in different mapping studies non-interchangeable and 
thus hinders its application in breeding. Holland (2007) explains 
that the instability of QTL for complex traits occurs because 
a biparental mapping population is a very small subset of an 
available diverse gene pool and each population in QTL mapping 
studies encompasses a different gene set controlling the trait.
	 Association analysis, an approach that tests correlations 
between genotypic and phenotypic variations in a diverse set of 
unrelated individuals, addresses these problems. It takes advantage 
of historical recombination in generations of meiosis during 
genotype development and is based on linkage disequilibrium 
between a marker and a QTL. Association analysis provides 
a higher resolution mapping, identification of more alleles, 
simultaneous analysis of multiple traits and direct application on 
breeding material. 
	 Estimation of population structure, which can arise from 
adaptation to local conditions or selection, is essential to prevent 
declaration of false-positive associations. If population structure 
and relatedness among individuals are accounted for, association 
analysis can be a powerful tool to identify QTL with small 
effects, as well as to avoid declaring false positive associations 
(Yu et al., 2006).
	 The phenomenon of a stark disproportion between the number 
of QTL published and practical application of the markers co-
localizing with detected QTL was highlighted by Xu and Crouch 
(2008). However, mapping studies can be consolidated to narrow 
down the DNA region where QTLs concur or overlap. A marker 
residing with quantitative trait loci mapped in various mapping 
studies across different environments and genetic backgrounds 
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could indicate the presence of one or more genetic factors, 
such as genes, transcription factor coding region or promotor, 
in the QTL vicinity underlying biological processes and 
eventually leading to the several phenotypic manifestations. 
Gene expression analysis postulate the existence of hotspots, 
a single polymorphism which can influence the expression 
of several genes mapped to the same locus (Breitling et al., 
2008).
	 The aim of our study was to assess the genetic diversity 
and population structure of maize inbred lines, to validate 
the QTLs for traits of interest previously mapped in different 
studies and determine if consistent QTLs for multiple yield-
related and flowering traits on the local breeding material 
and in agroecological conditions of southern Pannonian 
Basin may be valuable for marker assisted selection.

MATERIALS AND METHODS

A panel of 96 diverse maize inbred lines developed at the 
Institute of Field and Vegetable Crops, Novi Sad, Serbia, was 
selected for the analysis. It contained some historical relevant 
inbreds and a majority of elite commercial lines from Iowa 
Stiff Stalk Synthetic (BSSS), Lancaster and Iodent heterotic 
groups, including lines developed from local Serbian maize 
varieties with mixed origin and from exotic germplasm with 
limited information about their full pedigrees.
	 The trial was conducted during 2011 and 2012 in a 
randomized complete block design with three replicates in 
three locations: Rimski Sancevi (45°20’ N, 19°51’ Е, 84 
m a.s.l.), Srbobran (19°09’ Е, 45°46’ N, 88 m a.s.l.) and 
Sombor (45°33’ N, 19°48’ E, 79 m a.s.l.) The plot size for 
each genotype was 6 m2 and consisted of two rows, each 
4 m long. The distance between rows was 0.75 m and 0.22 
m within rows, with a density of 60 600 plants ha-1. The 
planting was performed by machine, whereas harvest was 
done manually and standard production technology practices 
were applied.
	 The phenotypic evaluation of inbred lines was performed 
for the following traits: days to pollination, days to silk 
emergence, anthesis silk interval (d), plant height (cm), 
ear height (cm), ear diameter (cm), ear length (cm), row 
number (per ear), kernel number per row, total leaf number 
(per plant), number of leaves above the ear (per plant), 1000 
kernel weight (g) and grain yield per plant (g). Days to 
pollination, days to silk emergence, and anthesis silk interval 
were evaluated at Rimski Sancevi and Srbobran during 
both years, whereas the other traits were analyzed in all five 
environments.
	 Genomic DNA was extracted from the seedlings using 
CTAB protocol according to the modified method of Doyle 
and Doyle (1990). Out of 50 markers initially chosen for 
their associations with QTLs for traits of interest in various 
mapping studies, 14 were excluded from the analyses due 
to their monomorphic manifestation or difficulties in PCR 
optimization. Remaining 36 fluorescently labelled SSR 
markers, evenly distributed throughout the genome and 
which primer sequences are available at the Maize Genetics 

and Genomics Database (MaizeGDB, http://www.maizegdb.
org), were used for molecular characterization. Total PCR mix 
contained 2.5 μL 25 ng genomic DNA, 1 μL 0.2 mM dNTP, 
1 μL 1×Taq buffer with KCl, 0.8 μL 2 mM MgCl2, 0.2 μL 1 
U Taq polymerase, 0.5 μL 0.5 pmol of each primer and 3.5 
μL nuclease-free water. PCR began with DNA denaturation 
at 94 °C for 5 min, followed by 38 cycles at 94 °C for 30 
s, 53-60 °C for 45 s, 72 °C for 45 s and the final extension 
for 7 min at 72 °C. The 10 μL reaction volume for fragment 
analysis contained: 2 μL mixture of differently labelled PCR 
products, 0.2 μL GeneScan500 LIZ size standard and 7.8 
μL Hi-Di formamide. The PCR products were separated by 
capillary electrophoresis on ABI Prism 3130 and their sizes 
were determined with Gene Mapper Software Version 4.0 
(Applied Biosystems).
	 The descriptive statistics for the phenotypic data were 
obtained in STATISTICA 12.6 (Statsoft, Tulsa, Oklahoma, 
USA). The broad-sense heredity of the traits was calculated 
using the following equation:

H2 = σ2
G/(σ2

G + σ2
e)

where σ2
G is the genotypic variance component, and σ2

e is 
the residual variance component. Genotypic data analysis 
determined the number of allele, observed heterozygosity, 
gene diversity and polymorphism information content 
(PIC) using Powermarker version 3.25 (Liu and Muse, 
2005). Population structure of the diverse population was 
calculated using model-based clustering method based on 
parametric model of frequency distribution with unknown 
number of subpopulations integrated into STRUCTURE 
software (Pritchard et al., 2000). The hypothetical number of 
subpopulations (K) ranged from 1 to 10 with 5 independent 
runs per K. The burn-in period and run length of Markov 
Chain Monte Carlo algorithm was set to 100 000 × 100 000. 
The admixture model for the ancestry of individuals was 
chosen allowing the possibility that inbred lines may have 
mixed ancestry. The assumption that the allele frequencies 
in each population are independent draws from a distribution 
was set as a default. No prior information was used to 
define subpopulations. Optimal number of subpopulations 
K was chosen based on method proposed by Evanno et al. 
(2005). The method determined the most probable number 
of genetic clusters by calculating the ad hoc statistic delta 
K (ΔK), which identifies the highest rate of change in the 
log-likelihood between successive K values by the equation: 

ΔK = m(|L(K + 1) − 2 L(K) + L(K − 1)|)/s[L(K)]
where m is the mean of the absolute value, L(K) is the mean 
likelihood over all runs for each K in STRUCTURE and 
s[L(K)] is the standard deviation of L(K) (Evanno et al., 
2005). Maize genotypes with a membership coefficient less 
than 0.75 were considered as mixed origin.
	 Associations between the markers and the traits were 
tested using general linear model (GLM) and mixed linear 
model (MLM) in TASSEL 2.1 (Bradbury et al., 2007). Trait 
data were normalized and minor alleles with frequencies less 
than 5% were removed from marker data using algorithms 
implemented in Tassel. Estimation of population structure 
(Q matrix) based on the average value of five iterations 
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of log probability of data obtained by the STRUCTURE 
were incorporated in GLM as a fixed covariate as well as 
1000 permutations for the correction of multiple testing. 
The marker-environment interaction was included in the 
model and was tested along the marker-trait associations 
using F-test with multiple degrees of freedom. Bonferroni 
correction for multiple testing (α/n) was applied to further 
reduce the possibility of declaring false positives. Coefficient 
of determination R2 was computed to determine the 
percentage of phenotypic variation explained by a marker. 
Additionally, the kinship matrix (K) defining the level of 
genetic covariance between pairs of genotypes as a random 
effect was used along with Q matrix for population structure 
and family relatedness correction (Q + K) in MLM analyses.

RESULTS AND DISCUSSION

In total, 296 alleles were detected in 36 SSR loci with 
mean number of 8.2 alleles per locus (Table 1). One third 
of SSR markers had 10 or more alleles. The largest number 
of alleles (21) was observed at umc1035 locus, while the 
smallest number of alleles (4) was identified at seven loci. 
Heterozygosity was observed at locus umc1122 indicating 

residual heterozigosity or a possible mutation. The average 
number of alleles per locus was relatively large regarding 
the number of marker and genotypes used. Liu et al. (2003) 
found much larger average number of alleles per locus 
(21.7) with 96 SSR markers in a 260 diverse set of inbred 
lines. In the study of Li et al. (2006) the average numbers of 
alleles obtained with 64 microsatellites in 46 maize inbred 
lines, were much smaller, 6.3. The average PIC value was 
0.64, similar to those found in other studies (Li et al., 2006; 
Reid et al., 2011), showing a significant level of genetic 
polymorphism. Relatively high level of polymorphism 
detected in the analyzed panel of maize inbred lines showed 
it contain significant genetic diversity and was suitable for of 
association mapping.
	 The model based method grouped genotypes into three 
populations using an ad hoc statistic ΔK based on the rate 
of change in the log probability of data between successive 
K values (Figure 1). The ΔK value reached its peak for K 
= 3 (Figure 1), indicating that this set of inbreds could be 
divided until into three groups. The first group contained 28 
genotypes, the second 16 and the third 36. The remaining 16 
inbred lines having the membership coefficient Q less than 
0.75 were grouped in the mixed group (Figure 2). The inbred 
lines clustered in general according to their pedigrees. The 
largest group contained inbred lines that belonged to BSSS 
heterotic group and originated mostly from B73, B14, B37, 
B84, and A681 lines, their crosses and different cycles of 
reselection. The second largest group encompassed 28 
inbreds from Lancaster Sure Crop (LSC) heterotic group, 
lines that derived various crosses and from C103, Mo17, 
Oh43 and other local germplasm. The third groups consisted 
of 16 inbred lines which have mostly Iodent heterotic pattern 
and few adapted inbred lines from exotic South American 
gene pool and improved inbreds from local Serbian 
germplasm. In this study, three clusters identified using a 

Bin
dupssr26	 1.04	 6	 0.000	 0.562	 0.51	 112-142
umc1035	 1.06	 21	 0.000	 0.866	 0.85	 110-212
umc1122	 1.06	 9	 0.021	 0.832	 0.81	 141-167; null
bnlg1556	 1.07	 11	 0.000	 0.806	 0.78	 150-184
bnlg125	 2.04	 11	 0.000	 0.669	 0.63	 164-196
phi083	 2.04	 4	 0.000	 0.614	 0.56	 121-129
bnlg1520	 2.09	 7	 0.000	 0.651	 0.59	 165-195
bnlg1523	 3.03	 9	 0.000	 0.480	 0.46	 177-236
umc1025	 3.04	 8	 0.000	 0.781	 0.75	 101-117
phi053	 3.05	 6	 0.000	 0.680	 0.62	 120-192
dupssr23	 3.06	 10	 0.000	 0.725	 0.68	 64-119
umc1022	 4.01	 6	 0.010	 0.472	 0.40	 65-97
umc2176	 4.03	 7	 0.000	 0.630	 0.58	 130-154
bnlg2291	 4.06	 10	 0.000	 0.751	 0.72	 153-196
phi093	 4.08	 4	 0.000	 0.664	 0.60	 280-286; null
umc1109	 4.10	 4	 0.000	 0.594	 0.53	 103-115
dupssr10	 5.04	 18	 0.000	 0.834	 0.83	 156-198
umc1221	 5.04	 8	 0.000	 0.757	 0.73	 69-95
bnlg1237	 5.05	 7	 0.000	 0.565	 0.47	 151-184
umc1792	 5.08	 5	 0.000	 0.603	 0.54	 113-125
bnlg238	 6.00	 12	 0.000	 0.832	 0.81	 135-179
umc1083	 6.02	 10	 0.000	 0.741	 0.71	 90-129; null
umc1014	 6.04	 8	 0.000	 0.792	 0.76	 113-140
bnlg1792	 7.02	 8	 0.000	 0.684	 0.63	 108-139
phi034	 7.02	 5	 0.010	 0.570	 0.48	 118-139
umc1944	 7.04	 6	 0.000	 0.705	 0.65	 117-139
umc1075	 8.01	 4	 0.010	 0.663	 0.59	 136-146
umc1360	 8.02	 4	 0.000	 0.639	 0.58	 139-149
bnlg162	 8.05	 11	 0.000	 0.813	 0.79	 214-260
bnlg666	 8.05	 15	 0.000	 0.778	 0.76	 111-158
phi027	 9.03	 4	 0.000	 0.557	 0.46	 141-156; null
bnlg430	 9.03	 5	 0.000	 0.569	 0.53	 99-111
bnlg1209	 9.04	 10	 0.000	 0.709	 0.68	 164-196
bnlg1525	 9.07	 13	 0.000	 0.811	 0.79	 157-200
phi059	 10.02	 4	 0.000	 0.549	 0.45	 139-156; null
umc2003	 10.04	 6	 0.000	 0.673	 0.61	 71-89; null
Average	 -	 8.2	 0.001	 0.684	 0.64	 -

Table 1. Parameters of genetic diversity in maize inbred lines 
obtained with microsatellites.

PIC: Polymorphism information content.

Allele 
number PICSSR locus

Observed 
heterozigosity

Gene 
diversity

Allele size 
(bp)

Figure 1. Estimation of the true number of clusters using 
ΔK method according to Evanno et al. (2005) from 10 
iterations obtained with Bayesian clustering analyses 
implemented in Structure. Optimization of hypothetical 
number of clusters (K), varying from K = 1 to 10, was 
performed using second order dimensionless statistics 
(ΔK). The modal value (the peak) indicates the most 
probable number of clusters.
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STRUCTURE analysis grouped inbred lines in three major 
heterotic groups, which is in congruence with their origins 
giving the biologically justification for the choice of the 
cluster number, as it was suggested by Pritchard et al. (2000). 
The correct estimates of population structure and accounts 
for its effects in linear models are crucial to avoid discovery 
of false-positive associations. Furthermore, the method that 
controls both population structure and relatedness proved to 
be powerful for association analysis (Yu et al., 2006). 
	 For all investigated traits, the 96 inbred lines comprised 
a range of phenotypic variation in the tested environments 
(Table 2). Coefficient of variation ranged from 4.7% for 
days to silk emergence to 36.8% for anthesis silk interval 
revealing a large amount of genetic variation among the 
inbred lines. Among the 13 traits, number of rows per ear 
had the highest (88%), while yield per plant had the lowest 
(30%) broad sense heritability.
	 Association analysis indicated significant correlations 
between several agronomic traits and microsatellites tested 

in different environments (Table 3). Only the loci that 
showed consistent associations with three or more traits 
were presented. In total, 87 and 85 marker-trait associations 
were determined using GLM and MLM model, respectively. 
No significant Marker × Environment interactions were 
observed for all traits using GLM.
	 The associations for flowering time seemed to be 
consistent in most the environments, whereas the number of 
associations for yield and yield related traits varied across the 
markers for both models. Seven markers were correlated with 
grain yield. The most stable associations with this trait were 
identified with bnlg162, in three out of five environments 
using both models.
	 Based on the largest number of associations between 
the marker and the analyzed traits consistent in more 
environments and identified by both GLM and MLM 
models, three markers, namely umc1025, bnlg1237 and 
bnlg162, were selected (Table 4). Slightly more significant 
associations between analyzed traits and markers umc1025 
and bnlg1237 were identified by MLM in comparison to 
GLM, whereas more associations was found using GLM 
for bnlg162 marker. Although MLM took into account 
information on both population structure and kinship and 
was, thus, more rigorous in claiming associations than GLM, 
it had greater statistical power and here detected more true 
associations than GLM. 
	 Marker umc1025 on chromosome 3 was associated 
with seven traits in two to four environments (Table 4). 
The phenotypic variation explained by the marker ranged 
from 5.6% for ear diameter to 14% for kernel number per 
row. Two traits, days to pollen shedding and ear diameter, 
had most consistent associations with the marker across 
environments. Grain yield was associated with umc1025 
in two and three environments, depending on the model. 
This marker accounted for 6.4%-8.1% of yield phenotypic 

Figure 2. Population structure of maize inbred lines estimated with Bayesian assignment probabilities using microsatellite 
data. Each genotype is presented as a vertical bar showing its coefficient membership values in three clusters: BSSS 
(blue), LSC (red) and Iodent (green). The inbred lines with coefficient membership less than 0.75 in all three clusters 
were placed in the mixed group. 

BSSS: Iowa Stiff Stalk Synthetic, LSC: Lancaster Sure Crop.

Days to pollination	 81.1 ± 4.0	 65.8	 88.4	   5.0	 0.42
Days to silking	 77.2 ± 3.6	 63.5	 83.6	   4.7	 0.53
Anthesis silk interval	 4.0 ± 1.5	 0.9	 7.3	 36.8	 0.38
Plant height	 178.2 ± 20.0	 130.8	 223.5	 11.2	 0.54
Ear height	 71.6 ± 13.6	 42.3	 101.5	 19.0	 0.84
Leaves above the ear	 6.0 ± 0.7	 3.9	 7.4	 11.3	 0.59
Total leaf number	 12.3 ± 1.1	 8.9	 15.3	   9.1	 0.81
Ear length	 14.7 ± 1.8	 11.2	 19.9	 12.2	 0.69
Ear diameter	 3.9 ± 0.3	 3.3	 4.6	   7.4	 0.65
Row number	 14.3 ± 1.7	 10.8	 18.9	 11.6	 0.88
Kernel number	 24.4 ± 3.8	 16.6	 35.2	 15.5	 0.56
1000 kernel weight	 254.4 ± 34.2	 166.0	 311.2	 13.4	 0.66
Yield per plant	 100.9 ± 0.6	 51.7	 140.3	 17.3	 0.30

Table 2. Descriptive statistics and broad sense heritability (H2) 
of maize inbred lines.

SD: Standard deviation; CV: coefficient of variation.

H2Trait
CV 
(%)Mean ± SD Minimum Maximum
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variation. A QTL with positive additive effect on grain yield 
near umc1025 was mapped in three environments in the 
study of Lima et al. (2006). Li et al. (2010) also found a 
QTL flanked with umc1025, which explained 10.4% of the 
phenotypic variation of yield.
	 Association analysis revealed significant correlations 
between marker bnlg1237 on chromosome 5 and five traits 
in one to five environments. Marker associations with days 
to pollination, days to silking and ear length were significant 
in all environments for both models, except the latter which 
were constant in four environments using GLM. In previous 
studies, bnlg1237 was associated with QTL for 1000 kernel 
weight (Lu et al., 2006), QTL for ear length (Ma et al., 2007), 
QTL for plant height (Tang et al., 2007) and QTLs for grain 
quality (Zhang et al., 2008).
	 Marker bnlg162 on chromosome 8 was linked with eight 
traits in a range of environments. Phenotypic variation 
explained by the marker varied from 6% up to 18.2% 
depending on the trait concerned and to less extent to the 
environment. The most stable associations with the markers 

were identified for number of days to pollination and silking 
in all environments, whereas ear length and yield were 
consistent in three out of five environments. The marker 
bnlg162 was correlated with QTL for plant height and 
flowering time (Frascaroli et al., 2007; 2009), QTL for root 
length, dry root weight and number of roots (Feng et al., 
2013) and QTL for protein, starch and oil content (Wassom 
et al., 2008; Li et al., 2009).
	 Multiple associations between various traits and one 
marker can indicate existence of a gene or QTL with large 
single pleiotropic effect on different traits in proximity to 
the marker. It may be possible that these genes or QTLs 
participate in a complex molecular system that control 
biochemical, metabolic or physiological pathways and 
indirect pleiotropic effects on fitness yield and yield related 
traits (Hao et al., 2010). Multiple associations between 
various traits could also be due to closely located QTLs in 
linkage disequilibrium created by selection, genetic drift or 
admixture of populations with different gametic frequencies 
(Mueller, 2004). Yang et al. (2012) found consistent and 

Table 3. Number of environments with significant associations between a marker and several maize traits using general (GLM) and 
mixed linear model (MLM).

nr env.: Number of environments.

Number of environments with significant associations

Trait MLMGLM

bnlg162	 Days to pollination	 4	 4	 3	 1	 0	 3
	 Days to silking	 4	 4	 4	 0	 0	 4
	 Total leaf number	 5	 1	 1	 0	 0	 1
	 Leaves above the ear	 5	 1	 1	 0	 0	 1
	 Ear length	 5	 3	 3	 0	 0	 3
	 Kernel number	 5	 2	 1	 1	 0	 1
	 1000 kernel weight	 5	 1	 2	 1	 2	 1
	 Yield per plant	 5	 3	 3	 1	 1	 2
umc1025	 Anthesis silk interval	 4	 2	 1	 1	 0	 1
	 Days to pollination	 4	 4	 4	 0	 0	 4
	 Days to silking	 4	 3	 3	 0	 0	 3
	 Total leaf number	 5	 2	 2	 0	 0	 2
	 Ear diameter	 5	 3	 4	 0	 1	 3
	 Kernel number	 5	 1	 3	 0	 2	 1
	 Yield per plant	 5	 2	 3	 0	 1	 2
bnlg1237	 Days to pollination	 4	 4	 4	 0	 0	 4
	 Days to silking	 4	 4	 4	 0	 0	 4
	 Ear diameter	 5	 1	 1	 1	 1	 1
	 Ear length	 5	 4	 5	 0	 4	 1
	 Yield per plant	 5	 0	 1	 0	 1	 0
umc1221	 Ear height	 5	 5	 1	 4	 0	 1
	 Total leaf number	 5	 1	 0	 1	 0	 0
	 Ear diameter	 5	 1	 2	 0	 1	 1
	 Yield per plant	 5	 1	 1	 1	 1	 0
dupssr23	 Days to pollination	 4	 4	 2	 2	 0	 2
	 Days to silking	 4	 2	 1	 1	 0	 1
	 Total leaf number	 5	 3	 2	 1	 0	 2
umc1022	 Plant height	 5	 3	 3	 0	 0	 3
	 Ear height	 5	 5	 5	 0	 0	 5
	 Leaves above the ear	 5	 1	 0	 1	 0	 0
bnlg238	 Anthesis silk interval	 4	 4	 3	 1	 0	 3
	 Ear height	 5	 1	 1	 1	 1	 0
	 Yield per plant	 5	 1	 1	 0	 0	 1
phi027	 Ear length	 5	 1	 1	 0	 0	 1
	 Kernel number	 5	 1	 2	 0	 1	 1
	 Yield per plant	 5	 1	 1	 0	 0	 1
phi034	 Ear length	 5	 1	 3	 0	 2	 1
	 Kernel number	 5	 1	 2	 0	 1	 1
	 Yield per plant	 5	 1	 1	 0	 0	 1

Total nr env.Marker
Unique for 

GLM
Unique for 

MLM
Common for 

GLM and MLM
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Table 4. Significant associations between markers umc1025, bnlg1237, bnlg162 and maize traits.

ASI: Anthesis silk interval; POLL: days to pollination, SILK: days to silking; TLN: total leaf number; LAE: leaf number above the ear; ED: ear diameter; EL: 
ear length; KN: kernel number per row; TKW: thousand kernel weight; YPP: yield per plant; R2: percentage of phenotypic variation explained by the marker. 
E: environment; E1: Rimski Šančevi 2011; E2: Srbobran 2011; E3: Rimski Šančevi 2012; E4: Srbobran 2012; E5: Sombor 2011; ns: nonsignificant for neither 
model; *Bonferroni correction threshold (α/number of markers) 0.05/36 = 1.38 × 10-3.

E

ASI	 E2	 0.001*	 1.2E-03*	 9.3	 ns	 ns	 -	 ns	 ns	 -
	 E3	 0.001*	 0.080	 8.8	 ns	 ns	 -	 ns	 ns	 -
POLL	 E1	 0.001*	 1.3E-03*	 10.3	 2.4E-04*	 1.2E-03*	 10.0	 8.9E-05*	 1.0E-04*	 15.1
	 E2	 1.1E-03*	 2.0E-04*	 9.4	 3.9E-04*	 2.2E-04*	 9.0	 5.5E-05*	 1.1E-03*	 12.3
	 E3	 3.5E-04*	 0.001*	 10.9	 8.5E-04*	 1.1E-03*	 9.2	 3.5E-04*	 0.001*	 13.2
	 E4	 0.001*	 1.9E-04*	 13.9	 0.001*	 1.2E-03*	 8.2	 1.1E-04*	 0.026	 13.0
SILK	 E1	 1.8E-4*	 1.0E-04*	 8.5	 0.001*	 1.2E-03*	 9.9	 3.4E-04*	 0.001*	 16.3
	 E2	 0.001*	 6.6E-04*	 6.3	 3.1E-04*	 0.001*	 8.2	 1.4E-04*	 1.2E-03*	 17.2
	 E3	 1.3E-04*	 4.3E-04*	 5.8	 1.4E-04*	 1.9E-04*	 7.8	 1.4E-04*	 0.001*	 14.4
	 E4	 ns	 ns	 -	 1.2E-03*	 1.4E-04*	 8.5	 5.5E-04*	 4.2E-04*	 11.8
TLN	 E2	 1.3E-03*	 0.001*	 9.0	 ns	 ns	 -	 ns	 ns	 -
	 E3	 ns	 ns	 -	 ns	 ns	 -	 0.001*	 0.001*	 9.4
	 E4	 1.7E-04*	 0.001*	 6.3	 ns	 ns	 -	 ns	 ns	 -
LAE	 E4	 ns	 ns	 -	 ns	 ns	 -	 0.001*	 0.001*	 10.9
ED	 E1	 0.047	 0.001*	 5.6	 ns	 ns	 -	 ns	 ns	 -
	 E2	 0.001*	 0.001*	 5.8	 ns	 ns	 -	 ns	 ns	 -
	 E4	 1.9E-04*	 1.6E-04*	 7.1	 6.4E-04*	 1.34E-03*	 6.1	 ns	 ns	 -
	 E5	 4.9E-05*	 1.7E-04*	 7.5	 ns	 ns	 -	 ns	 ns	 -
EL	 E1	 ns	 ns	 -	 0.001*	 4.5E-05*	 8.0	 0.001*	 1.8E-04*	 9.4
	 E2	 ns	 ns	 -	 0.036	 0.001*	 8.4	 7.7E-05*	 4.4E-05*	 7.5
	 E3	 ns	 ns	 -	 0.001*	 3.1E-04*	 7.5	 ns	 ns	 -
	 E4	 ns	 ns	 -	 3.4E-04*	 1.1E-03*	 8.0	 ns	 ns	 -
	 E5	 ns	 ns	 -	 7.4E-04*	 4.2E-04*	 6.8	 5.8E-05*	 2.2E-05*	 8.6
KN	 E2	 ns	 ns	 -	 ns	 ns	 -	 3.8E-04*	 0.015	 -
	 E3	 0.008	 0.001*	 12.5	 ns	 ns	 -	 2.1E-04*	 9.8E-04*	 6.0
	 E4	 0.031	 1.9E-04*	 14.0	 ns	 ns	 -	 ns	 ns	 -
	 E5	 0.001*	 3.7E-04*	 10.2	 ns	 ns	 -	 ns	 ns	 -
TKW	 E1	 ns	 ns	 -	 ns	 ns	 -	 0.001*	 0.044	 15.1
	 E3	 ns	 ns	 -	 ns	 ns	 -	 0.012	 1.1E-04*	 12.4
	 E5	 ns	 ns	 -	 ns	 ns	 -	 0.031	 2.8E-04*	 18.2
YPP	 E1	 7.1E-04*	 1.2E-03*	 6.5	 ns	 ns	 -	 3.4E-04*	 5.4E-04*	 9.9
	 E3	 ns	 ns	 -	 ns	 ns	 -	 0.044	 0.001*	 8.0
	 E4	 0.021	 1.4E-04*	 6.4	 ns	 ns	 -	 7.2E-04*	 1.2E-03*	 10.9
	 E5	 6.5E-04*	 1.1E-04*	 8.1	 0.002	 3.4E-04*	 4.7	 0.001*	 0.015	 9.3

Trait

umc1025

p-GLM p-MLM R2 (%)

bnlg1237

p-GLM p-MLM R2 (%)

bnlg162

p-GLM p-MLM R2 (%)

dense QTL clusters for yield and related traits in four 
chromosome bins 3.04-3.05, 7.02, 8.04-8.05 and 9.04-9.05. 
Two of them, 3.04 and 8.05, are congruent with the region of 
associations between a marker and multiple traits identified 
in this study. Since the bin size of maize chromosome is 
relatively large and corresponds to a typical QTL interval 
size of 10 cM (Holland, 2007), the location of QTLs in 
the same bin cannot provide precise conclusion about the 
nature of multiple traits correlations. Nonetheless, these loci 
may indicate the chromosome regions that harbor genetic 
factors important for controlling yield-associated traits and 
represent hotspots that deserve a more careful approach and 
closer examination. 

CONCLUSIONS

The panel of selected maize inbred lines demonstrated 
significant genetic diversity suitable for association analysis. 
Its population structure analysis classified inbred lines 
concordantly to their origins and heterotic group indicating 
that Bayesian method could give more insight into often 
limited pedigree information. Significant associations found 

between the markers and the traits seemed to be more stable 
and consistent for flowering time than yield and yield-related 
traits, thus only former can be useful in marker-assisted 
breeding for the validated environments. The chromosome 
regions containing QTLs associated with multiple traits 
could be important targets for selection during breeding.
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