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Abstract

Glyphosate may cause injury to non-target plants. The first detectable symptom after glyphosate treatment is the growth inhibition, 
followed by noticeable yellowing (chlorosis) of the treated tissue. Five to ten days after the treatment, the chlorosis turns into necrosis and 
the plants begin to die. Greenhouse research was conducted in 2007 to investigate the response of glyphosate resistant (GR) soybeans PAN 
520 line and non-glyphosate resistant EGRET line of soybeans to glyphosate trimesium sulphosate and to evaluate soybeans injury to 
help in weed resistance detection. The methods used to detect changes were dose response test, HPLC measurement based on glyphosate 
induced accumulation of shikimate, and morpho-anatomical changes (light and electron microscopy). Damaged chloroplasts are a clear 
indication of a glyphosate injury. If the injury rating is related to increased shikimate levels, there is greater certainty that differences 
among biotypes are due to glyphosate tolerance.
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Introduction

A comparison of transgenic versus conventional soy-
beans reveals that transgenic glyphosate-tolerant soybeans 
allows both the simplification of weed control and greater 
work flexibility. Cropping transgenic soybeans also fits well 
with conservation tillage. Transgenic soybeans has an eco-
nomic margin similar to conventional soybeans, despite a 
higher seed cost (Bonny, 2008). Reports stated that over 
12 million hectares of cropland producing soybeans were 
infested with glyphosate resistant weeds in 2010. Across 
the major resistant weed species, almost 37 million hect-
ares were impacted (Greenpeace summary, 2013). Weed 
control will continue to be an important component in 
crop production if high yields and the quality of the crops 
are to be maintained. High efficacy in weed control today, 
as it has been for the last 50 years, is achieved through her-
bicide applications. The most widely used herbicide with 
consistent weed control is glyphosate (Giesy et al., 2000; 
Williams et al., 2000). It is the world’s most important her-
bicide because it is versatile, it controls a wide spectrum of 
annual and perennial weeds in no-till agriculture, orchards, 
forestry and genetically modified crops such as maize, soy-
beans, cotton, etc. It is also successfully used as a “burn 
down“ treatment before no-till planting and can be ap-
plied alone and in a tank mix (Buhler and Werling, 1989). 
In the beginning a smaller amount of herbicide was used. 
This amount increased from 2002 and today the success of 
transgenic soybeans for farmers has led to a higher use of 
glyphosate as a replacement for other herbicides. This has 
in turn led to a decline in its effectiveness (Bonny, 2008). 

The first detectable symptom after glyphosate treatment 
is growth inhibition, followed by a noticeable yellowing 
(chlorosis) of treated tissue. Five to 10 days after the treat-
ment, the chlorosis turns into necrosis and the plants begin 
to die (Monaco et al., 2002). Glyphosate disrupts chloro-
plasts, cell membranes, cell walls, alters protein and nucle-
ic acid synthesis, inhibits photosynthesis (Hoagland and 
Duke, 1982) and reduces chlorophyll content (Lee, 1981). 
Glyphosate binds to 5-enolpyruvylshikimate-3-phosphate 
synthase (EPSPS) enzyme (EC 2.5.1.19), which conse-
quently inhibits the biosynthesis of the aromatic amino ac-
ids, tryptophan, tyrosine and phenylalanine (Siehl, 1997). 
With the inhibition of the EPSPS, shikimate-3 phosphate 
accumulates and is cleaved to shikimate in the tonoplast 
or vacuole (Hollander-Czytko and Amrhein, 1983). An 
assay measuring shikimate provides empirical evidence for 
glyphosate drift in addition to visual or morfo-anatomical 
symptoms (Burke et al., 2005). 

In this study, we examined effects of glyphosate-trime-
sium sulphosate on anatomical properties and shikimate 
accumulate, to explain differences between GR and con-
ventional non herbicide resistant soybeans.  

Materials and methods

General procedures
Experiments were conducted in 2007 at the University 

of Pretoria (South Africa) in the greenhouse and labora-
tory. Seeds of soybean varieties: genetically modified PAN 
520 (GR; seed provided by Syngenta, South Africa) and 
susceptible EGRET (S) were planted in 1L pots. Pots were 
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Microscopy (TEM - Transmission electron microscopy 
and LM -Light microscopy)
Samples were collected 3, 7 and 24 HAA. Sample 

preparation for TEM and LM microscopy was done ac-
cording to Glauert (1975). Pieces about 2-4 mm2 were cut 
from the first true developed trifoliate. Samples were fixed 
by immersion in glutaraldehyde (2.5% glutarat aldehide 
in 0.075 M phosphate buffer, pH 7.4) for 24 h at 4 °C. 
Samples were then rinsed (3 x 10 min) in fresh phosphate 
buffer and fixed in 0.5% water solution of osmium tetraox-
ide (1-2 h), and rinsed 3 times with distilled water. Dehy-
dration was done in increasing concentrations of ethanol 
(30%, 50%, 70%, 90%, 3 × 100%) for 30 min. Samples 
were then infiltrated in 50% Quetol for 1 hour and placed 
in plastic wells filled with Quetol (100%) for polymeriza-
tion. Polymerization was done in an oven at 60oC for 39 
h, and quetol blocks were cut on microtome (LEICA SM 
2000 R). The final steps of sample preparation for micros-
copy were done according to the procedure developed by 
Coetzee and Van der Merwe (2007).

Transmission electron microscopy (TEM)
Ultra-thin cuts of leaf samples were placed on a mesh 

(ø3 mm) and fixed with 4% uranil acetate (10 min) and 
Reinold’s acid (2 min) followed by rinsing 20× in each of 
3 glasses filled with distilled water. Samples were examined 
under a transmission electron microscope (Philips EM 
301 transmission electron microscope, Eindloven, Neth-
erlands).

Light microscopy (LM)
Leaf cuts (1-5 μm) were placed on a microscope glass 

in a drop of water, dyed with Toluidine blue, dried, cov-
ered with oil (Zeiss, Immersol, 518N) and covered with 
the cover glass. Samples were examined under the light 
microscope (Nikon Optiphod-Nikon Instech Co., Kana-
gawa, Japan).

Statistical analysis
Statistical analysis was performed with the SigmaPlot 

4.0 software (1997). The experimental results of micros-
copy studies were examined visually. Lethal dose curves 
were fitted according to the following nonlinear regres-
sion model accounting for harmful effects proposed by 
Brain and Cousens (1989): Y = c + {[(d – c) + (kx)] / [1 + 
(x / g)b]}; where: Y- % growth, c-average plant response to 
high herbicide application rate, d-average plant response 
to application rates close to zero, b-slope of the best fitted 
line, g-herbicide dose causing the effect between c and d, x-
herbicide application rate, and k-the initial rate of increase 
at low doses. Index of resistance (IR) was calculated as 
LD50 of the resistant population / LD50 of the susceptible 
population.

filled with soil from a typical field for the South African 
region. At the cotyledon plant growth stage pots were 
thinned to 3 plants per pot. Plants were then placed in the 
greenhouse at an average 22.8/10.5 °C (day/night) tem-
perature, 54.6% RH, under 12:12 h light: dark period. 
For better N fixation soybean seeds were inoculated with 
Bradylizobium japonicum (6.5x108 live cells g-1, 100 g seed 
with 400 mg inoculums). After planting, 400 ml of tap wa-
ter were added to each pot and plastic bags were tied above 
to keep the moisture until the cotyledon growth stage. 
The plants were watered every other day with tap water 
and every 15 days 200 ml of nutrient solution (calcium ni-
trate: CaO-19.5% and NO3-15.5% and potassium sulfate: 
K20 - 42% and S-18.5%) were added. Nutrient solutions 
were prepared by dissolving 7.5 g calcium nitrate and 32 g 
of potassium sulfate in 50 L of water. In our experiments 
soybean plants were treated with six doses of glyphosate 
trimesium sulphosate (500 g L-1): 0.5 kg a.i. ha-1, 1 kg a.i. 
ha-1,  2 kg a.i. ha-1, 3 kg a.i. ha-1, 4 kg a.i. ha-1 and 5 kg a.i. 
ha-1 plus untreated control. Treatments were performed 28 
days after planting (at first trifoliate growth stage, BBCH 
11) using the indoor hand sprayer equipped with a RS-
MM 110o/04 nozzles and applying 300 L of water per ha 
at 276 kPa. The experimental design used was completely 
randomized design, with two replications. The pots were 
harvested 17 days after application (DAA). The plants 
were then oven-dried (75 °C) for 48 h to determine the 
dry weight. For monitoring morpho-anatomical changes 
we used the glyphosate trimesium sulphosate at doses of 
0.05, 0.1 and 0.2 g a.i. m-2 in 40 ml of water. Application 
was made by dipping one half of one leaf per plant per each 
herbicide dose. Samples were collected 3, 7 and 24 hours 
after application (HAA). For measuring shikimate accu-
mulation three weeks old plants were used. Plants were 
sprayed with 1 kg a.i.ha-1 dose of herbicide. Samples were 
collected from treated and untreated plants of both variet-
ies at 2, 4 and 6 DAA.

Extraction of shikimate
Plant material was ground in liquid nitrogen by mortar 

and pestle. About 1.5 g of ground material was mixed with 
10 ml of 1M HCl and shaken for 24 h. The pH was adjust-
ed with 1M NaOH and 0.1M NaOH to pH = 3.0 - 3.5. 
After that, filtration was conducted and supernatant was 
refrigerated at 4 °C until the analysis. Analysis of shikimate 
(HPLC) was performed by using Mueller et al. (2003) 
method. Material extracted as described above was centri-
fuged at 15.000 g for 5 min to remove any particulate mat-
ter. An aliquot (20 µl) of the supernatant was injected into 
water HPLC (Hewlett Packard Agilent 1100 series, DAD 
(Diode Array Detector), Lune-NH2, column diameter 5 
µl, flow 1 ml min-1). The retention time of shikimate was 
approximately 7 min.
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Results

Dose response test
Differences in response to herbicide doses between 

varieties were observed through dry weight data (Tab. 1, 
Fig. 1 a,b). The IR showed that the GR was significantly 
more tolerant than the S variety. Visual evaluation showed 
injury (17 DAA) in both varieties. Symptoms were tem-
porary in GR, and in S plants injury lead to plant decay. In 
the S plants, 0.5 kg a.i. ha-1 caused curling of leaves which 
turned into chlorosis and necrosis at four times this rate. 
Fifty percent of the plants were dead after application of 
0.5 kg a.i. ha-1 and almost 100% of the plants were dead 
after the application of 1 kg a.i. ha-1 of the herbicide, re-
spectively. Contrary, the GR showed the first symptoms at 
2 kg a.i. ha-1 as slight chlorosis, brown spots, speckling and 
curling of the leaves.

Effect of glyphosate on morpho-anatomical changes in 
soybeans leaf

Effects of glyphosate on leaf anatomy of GR and S vari-
eties were observed. Deformations, wrinkling and changes 
of shape in leaf cells were observed less than 24 HAA of 
1 and 2 kg a.i. ha-1 in S plants of soybeans (Fig. 2b) vs GR 
(Fig. 2a). Symptoms on leaves of the GR plants were simi-
lar. They were expressed at lower levels than in S plants and 
appeared only after the application of the highest dose (2 
kg a.i.ha-1). Brown spots were shown only on GR soybeans 
leaves at 2 kg a.i. ha-1 of herbicide a couple of days after the 
treatment (Fig. 2c). Symptoms on the GR vs. S plants were 
temporary. 

Soybean 
variety LD50 CI IR

kg a.i. ha-1

Experiment I
 S   0.107 0.103

 GR  0.929 0.336 8.69
Experiment II

 S   0.91 0.77
 GR  5.37 3.31 5.89

Tab. 1. LD50 and IR for glyphosate based on dry weight of 
soybean varieties

CI – confidence interval 0.05 for LD50, IR – index of resistance

Fig. 1a. Dry mass of susceptible and glyphosate resistant soybean 
plants at different glyphosate doses; Experiment I

Fig. 1b. Dry mass of susceptible and glyphosate resistant soybean 
plants at different glyphosate doses; Experiment II

Fig. 2. Effects of glyphosate (2 kg a.i.ha-1) during the first 24 
HAA on soybean plants: a) GR variety; b) S variety; c) brown 
spots on GR variety
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fected at 24 HAA of 0.5 kg a.i. ha-1 of the herbicide (Fig. 
3f ).  1kg a.i. ha-1 of glyphosate caused no damage on upper 
and under epidermal cells, mesophyll and vascular bonds 
(Fig. 3g), but palisade and pith tissue cells appeared dam-
aged at 2 kg a.i. ha-1 at 24 HAA (Fig. 4h) like the cells of S 
plants (Fig. 3d). Alterations in epidermal cells indicate the 
susceptibility of the variety even to low glyphosate rates 
(Fig. 3b).  

Transmission electron microscopy
Electron micrographs of cross sections of both variet-

ies are shown in Fig. 4. Changes in S plants were shown as 
significant damage of lamellas, branches and chloroplast 
membranes and a number of chlorophyll grains were sig-
nificantly reduced. Changes in GR were hardly notice-
able. 

Anatomical alterations were more intense in S than in 
GR cells. LM and TEM showed different levels of damage 
in leaf tissue and cells at different doses of glyphosate. 

Light microscopy
The observations on healthy tissue of both varieties are 

illustrated in Fig. 3a and 3e. The upper surface of untreated 
leaves at 0-h exhibited a cobblestone structure of elongated 
and gently contoured epidermal cells separated by depres 
sions. The upper and lower epidermal cells had thick walls. 
Mesophyll cells contained abundant organelles, including 
many chloroplasts and central vacuoles.

Damage on the upper epidermis and palisade tissue as 
well as changes in pith tissue were noticeable at 24 HAA of 
S leaves treated with 0.5 and 1 kg a.i. ha-1 of the herbicide 
(Fig. 3b, c), while cytolisis, pycnotic clumping and general 
structural disorganization of the stoma were  recorded at 
the highest treatment rate (Fig. 3d). 

In contrast, structural damages to GR leaves were min-
imal (Fig. 3f, g). Compared to S, GR leaves appeared unaf-

Fig. 3. Light micrographs of cross sections of leaves of the S (a, 
b, c and d) and GR (e, f, g and h) varieties at various times after 
treament with different rates of a commercial glyhphosate for-
mulation at half leaf stage of growth showing effects on upper 
(Ue) and lower (Use) epidermal cells, palisade (Pal) and pith 
(Pt) tisue

Fig. 4. Transmision electron micrographs of cross sections of 
leaves of the S (a, b, c and d) and GR (e, f, g and h) varieties at 
various times after treament with different rates of a commercial 
glyhphosate formulation at half leaf stage of growth showing ef-
fects on chloroplasts (Chl), cell membrane (Cm), lamelas (L) 
and product of photosynthesis,  starch granules (Sg)
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creased 1.9 fold, but these changes were not statistically 
significant (Tab. 2). 

Discussion

At first glance susceptible and glyphosate resistant va-
rieties of soybeans look similar, almost the same, but their 
reaction to different doses of glyphosate was different. We 
started with the hypothesis that every applied dose of her-
bicide can cause some level of damage to leaves in case of 
non-target application of herbicide, independently of the 
soybeans variety. Every change to the cuticle and epider-
mis will affect the passive way for glyphosate absorption 
(Feng et al., 2003), and further effects will depend on 
plant genetics and its fitness. The flattening of the epi-
dermal surface (observed 24 HAA in our experiments) is 
likely due to turgidity loss in the epidermal cells, leading 
to the formation of depressions and peaks (Fig. 3b, d). 
Damage to epidermal cells and cells in general of S plants 
after the application of 0.5 kg a.i. ha-1 of glyphosate, con-
firm the susceptibility of these plants (Fig. 3b). In addi-
tion, changes appeared on palisade cells and chloroplasts. 
Similar results were reported by Azevedo (1995) in the 
response to pollutants in Glycine max. Similarly Santos et 
al. (2007) observed damages on epidermal cells of Eucalip-
tus urograndis. At the rate of 1 kg a.i. ha-1 24 HAA cells 
of palisade tissue were disorganized in S plants (Fig. 3c), 
and chloroplasts were destroyed (Fig. 3c and 4c). Ryerse et 
al. (2004) concluded that formulation and surfactant can 
affect crop yield and efficacy of different herbicide formu-
lations containing the same active ingredient. Damage to 
chloroplasts in S plant cells explain chlorotic symptoms 
and reduced photosynthesis vs GR plants. Detected symp-
toms in our experiments (chlorosis, necrosis, brown spots, 
wrinkling of the leaves etc., Fig. 5) are consistent with ear-
lier descriptions of glyphosate damage to soybeans at com-
parable growth stages (Zobiole et al., 2011). These clear 
pictures we expected in case of weed resistance. However, 
our tested C. bonariensis population did not show visual 
differences in sensitivity to glyphosate. Lethal dose for sus-
ceptible population of C. bonariensis was 0,119 kg a.i. ha-1 
and calculated IR was 1,25.

Some researchers also indicated that GR soybeans has 
acceptable tolerance to POST applications of glyphosate, 

Healthy tissues of both varieties are illustrated in Fig. 
4a and 4e. Thick cell walls, a normal elliptical shape of 
chloroplasts with starch granules, and non-affected lamel-
las in untreated leaves of both varieties are illustrated in 
Fig. 4a,e. At 0.5 kg a.i. ha-1 of glyphosate wrinkling and 
the destruction of chloroplast lamellas occur and intercel-
lular spaces between the cells can’t be seen while formed 
vesicles in cytoplasm of S plants (Fig. 4b) can. In addi-
tion, no symptoms in cells of GR plants (except very small 
vesicles) were noted (Fig. 4f ). A high level of damage of 
chloroplasts (Fig. 4c) and plasmalema separated from the 
cell wall vs normal cells in GR plants are shown in Fig-
ure 4g. Low effects of herbicide application on cells of GR 
plants are shown as disintegrated chloroplasts and starch 
granules (Fig. 4g). These alterations would correspond to 
damages observed in palisade and pith cells (Fig. 3c, g). 
At 2 kg a.i. ha-1 of herbicide application  the cytolysis and 
total tissue damages in the leaf anatomy of both varieties 
were observed (Fig. 4d, h) and corresponded to the altera-
tions observed with the LM (Fig. 3d, h).

Shikimate accumulation due to glyphosate toxicity
The control plants of both varieties had very small 

amounts of shikimate (GR -0.129 mg g-1, S -0.117 mg g-1 

fresh weight) and this confirmed the validity and sensitiv-
ity of this method. In contrast, the concentration of shiki-
mate increased rapidly in the glyphosate treated S plants.

After glyphosate treatment the concentration of shi-
kimate reached 3.591 mg g-1 fresh weight in S plants and 
0.243 mg g-1 fresh weight in GR 6 DAA. Amount of shi-
kimate in treated S plants rapidly increased: 19.6 fold 
(second day), 28.4 fold (fourth day) and 30.7 fold (sixti-
eth day) compared with untreated control vs GR. Statis-

tical analysis (ANOVA) confirmed significant differences 
in the amounts of shikimate sampled at 2, 4 and 6 DAA 
(Tab. 2).

Statistical analysis of GR plants showed no significant 
differences between the data sampled at 2, 4 and 6 DAA 
except between untreated and treated plants at 4 DAA 
(Tab. 2). From 2 to 4 DAA in the GR plants the amount 
of shikimate increased 3.9 fold and from 4 to 6 DAA de-

S soybean GR soybean
C-2 day 0.0028 *** 0.311 NS
C-4 day 0.000044 **** 0.026 *
C-6 day 0.000014 **** 0.476 NS
2-4 day 0.096 NS 0.152 NS
2-6 day 0.0379 * 0.733 NS
4-6 day 0.653 NS 0.08 NS

Tab. 2. ANOVA differences in the amount of shikimic acid 
based on the sampling date

Confidence interval 0.05, C-control, P<0.0001****, P<0.001***, P<0.01**, 
P<0.05*, NS- non significant differences, S-susceptible variety, GR-
glyphosate resistant variety, C-control

Fig. 5. Response to glyphosate 1 kg a.i.ha-1; a) GR; b) S
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together inhibited plant growth. Similarly, Gougler and 
Geiger (1984) concluded that when low productivity of 
photosynthesis is measured after glyphosate application, 
plants will die. All determined symptoms in our experi-
ments confirmed effects of MOA (mode of action) of 
glyphosate. These experiments showed the importance of 
leaf micro-morphological studies in characterization of 
injuries caused by glyphosate drift, prior to visual damage 
(Santos et al., 2007). It is important to know that when ap-
plied foliarly glyphosate is very mobile in the plant, and is 
rapidly distributed through symplastic route down to the 
roots and meristem (Bromilow and Chamberlain, 2000). 
When glyphosate is applied at sub-lethal doses the prod-
uct can result in injuries developing from the younger to 
the older parts of the plant (Santos et al., 2007).

The small amount of shikimate in untreated plants 
confirmed that the amount of shikimate is not related to 
the resistance or susceptibility of the plants. This meth-
od is used as an early and highly sensitive indicator of 
glyphosate effects on sensitive plants (Komossa, 1992). 
Changes in the amount of shikimate in treated plants vs 
control plants were significant for S plants and not signifi-
cant for GR plants, except at 4 DAA (Tab. 2). Other re-
searchers observed a decreased concentration of shikimate 
in GR soybeans (Singh and Shaner, 1998) and in Abutilon 
theophrasti Medik. (Becerril et al., 1989). This observation 
is most likely due to the metabolism of shikimate in re-
sistant plants as the plant recovers from the initial injury 
which is not the case for susceptible plants. In contrast, 
the concentration of shikimate increased from 2-6 DAA 
in non GR plants of soybeans. 

Applied herbicide caused stress to the plants of both 
varieties, but GR plants did not show the symptoms. 
One of the explanations may be that in GR plants the 
metabolism is activated or that the production of insensi-
tive EPSPS has increased. This theory is based on the fact 
that the accumulated shikimate binds with the alternative 
type of EPSPS which will discharge, and on the possibil-
ity that other enzymes are also present in the cells (GOX 
enzymes) which can decompose herbicides like glyphosate 
(Mannlerof et al., 1997). These observations demonstrate 
that these soybean varieties differ in susceptibility to the 
MOA of glyphosate, since accumulation of shikimate 

although temporary injury symptoms of chlorosis, dark 
spotting and necrosis have been reported (Krausz and 
Young, 2001). Al-Khatib and Peterson (1999) reported 
that glyphosate at 280 g.a.i.ha-1 applied at V3 growth 
stage caused transient injury to conventional soybeans 
but did not reduce yield. Insertion of a gene encoding a 
glyphosate-insensitive EPSPS into soybeans (Padgette et 
al., 1995) enables GR soybeans to remain almost unaf-
fected upon glyphosate treatment, because the glyphosate 
insensitive EPSPS allows the plant to meet its needs for 
the aromatic amino acids. Although GR soybeans may 
not be totally invulnerable to glyphosate, it generally has 
a larger margin of safety than typically found with tradi-
tional selective herbicides used in soybeans. Potential risks 
associated with herbicide injury are thus greatly reduced 
(Padgette et al., 1995). Metabolism of glyphosate in toler-
ant plants (crop and weed) can explain more or less tem-
porary slight chlorosis, speckling and brown spots in GR 
(Fig. 2c). According to Duke et al. (2003) amynomethyl 
phosphonic acid (AMPA) is the main glyphosate metabo-
lite which can cause damage to leaves of glyphosate tol-
erant soybeans. Reddy et al. (2004) gave similar conclu-
sions, and determined the presence of AMPA in leaves 
and seeds of soybeans and with that explained the symp-
toms on GR plant leaves. When comparing the symptoms 
they determined, changes in GR variety after application 
of glyphosate came from its metabolite AMPA. This me-
tabolite at 0.12 kg ha-1 causes chlorosis of GR soybeans. 
Identification of such alterations would be useful for early 
detection of injury by glyphosate drift events. Contrary 
to morphological changes noted 17 DAA of herbicide, 
anatomical changes in leaf tissue were seen already a few 
HAA, which would enable the rapid identification of dif-
ferential sensitivity to herbicides such as glyphosate. In 
both of the varieties changes were determined at 7 HAA 
at 2 kg a.i. ha-1 of glyphosate (Fig. 4d, h) and 24 HAA at 
all applied doses of the herbicide in S soybean plants (Fig. 
3b, c, d, 4b, c, d). Ryerse et al. (2004) noted dehydration of 
epidermal cells, partial cytolysis and cytolysis of pith tissue 
cells by 6 HAA at 740 g a.i. ha-1 glyphosate. In their experi-
ments changes confirmed on all anatomical levels of the 
leaf were also confirmed in our experiments. Also, Ryerse 
et al. (2004) determined cell merger at 6 HAA, particular 
citolysis of epidermal and pith tissue cells. The main differ-
ences in reaction between S and GR plants to glyphosate 
are seen through in chloroplasts. Analysis of leaf sections 
of C. bonariensis showed that lowest dose of glyphosate 
also caused changes in the tissue: deformations of cellwall, 
lamelas and chloroplasts and number of chlorophyll grains 
have decreased (Fig. 6). Coresponding to increasing dose 
of herbicide the injuries were more prevalent.

Destroyed chloroplasts caused the reduction of photo-
synthesis and halted plant growth.

Glyphosate caused absorption of CO2 of young leaves 
in the first 2 HAA, which resulted in changes in shiki-
mate pathway and photosynthesis, and all those effects 

Fig. 6. Leaf section C. bonariensis after 0.5 kg a.i. ha-1 glifosate 
trimesium sulphosate: cell wall (Cw), chloroplast (Chl), lamelas 
(Lm) (TEM, enlargement 7500x), 24 HAA
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